1
|
Rastogi G, Mohapatra A, Mishra P, Mandal S, Kulkarni R, Ganesan R, Thamizhavel A, Anil Kumar PS. Crossover from gapped-to-gapless Dirac surface states in magnetic topological insulator MnBi 2Te 4. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 36:085703. [PMID: 37883988 DOI: 10.1088/1361-648x/ad0765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/26/2023] [Indexed: 10/28/2023]
Abstract
Intrinsic magnetic topological insulators (MTIs) host exotic topological phases such as quantized anomalous Hall insulating phase, arising due to the large magnetic exchange gap. However, the interplay of magnetism and topology in these systems in different temperature regimes remains elusive. In this work, we present the logarithmic temperature-dependence of conductivity for sub-100 nm thick exfoliated flakes of MTI MnBi2Te4in the presence of out-of-plane magnetic fields and extracted the linear slope,κ. We observed a characteristic change,Δκ∼-0.5in the low-temperature regime, indicating the gapped Dirac surface state according to Lu-Shen theory. We also report the recovery of topological properties in the system via the weak-antilocalization effect in the vicinity of antiferromagnetic to paramagnetic transition and in the paramagnetic regime. Hikami-Larkin-Nagaoka analysis suggested the presence of topological surface states. Therefore, our study helps in understanding how intrinsic magnetism masks topological properties in an MTI as long as magnetic ordering persists.
Collapse
Affiliation(s)
- Gagan Rastogi
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Abhinab Mohapatra
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Pramita Mishra
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Shoubhik Mandal
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Ruta Kulkarni
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - R Ganesan
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - A Thamizhavel
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - P S Anil Kumar
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
2
|
Sasmal S, Mukherjee J, Suri D, Raman KV. In-depth analysis of anisotropic magnetoconductance in Bi 2Se 3thin films with electron-electron interaction corrections. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:465601. [PMID: 34399417 DOI: 10.1088/1361-648x/ac1de0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
A combination of out-of-plane (OOP) and in-plane (IP) magnetoconductance (MC) study in topological insulators (TI) is often used as an experimental technique to probe weak anti-localization (WAL) response of the topological surface states (TSSs). However, in addition to the above WAL response, weak localization (WL) contribution from conducting bulk states are also known to coexist and contribute to the overall MC; a study that has so far received limited attention. In this article, we accurately extract the above WL contribution by systematically analyzing the temperature and magnetic field dependency of conductivity in Bi2Se3films. For accurate analysis, we quantify the contribution of electron-electron interactions to the measured MC which is often ignored in the WAL studies. Moreover, we show that the WAL effect arising from the TSSs with finite penetration depth, for OOP and IP magnetic field can together explain the anisotropic magnetoconductance (AMC) and, thus, the investigated AMC study can serve as a useful technique to probe the parameters like phase coherence length and penetration depth that characterise the TSSs in 3D TIs. We also demonstrate that increase in bulk-disorder, achieved by growing the films on amorphous SiO2substrate rather than on crystalline Al2O3(0001), can lead to stronger decoupling between the top and bottom surface states of the film.
Collapse
Affiliation(s)
- Satyaki Sasmal
- Tata Institute of Fundamental Research, Hyderabad, India
| | | | - Dhavala Suri
- Tata Institute of Fundamental Research, Hyderabad, India
| | | |
Collapse
|
3
|
Fei F, Zhang S, Zhang M, Shah SA, Song F, Wang X, Wang B. The Material Efforts for Quantized Hall Devices Based on Topological Insulators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904593. [PMID: 31840308 DOI: 10.1002/adma.201904593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/09/2019] [Indexed: 06/10/2023]
Abstract
A topological insulator (TI) is a kind of novel material hosting a topological band structure and plenty of exotic topological quantum effects. Achieving quantized electrical transport, including the quantum Hall effect (QHE) and the quantum anomalous Hall effect (QAHE), is an important aspect of realizing quantum devices based on TI materials. Intense efforts are made in this field, in which the most essential research is based on the optimization of realistic TI materials. Herein, the TI material development process is reviewed, focusing on the realization of quantized transport. Especially, for QHE, the strategies to increase the surface transport ratio and decrease the threshold magnetic field of QHE are examined. For QAHE, the evolution history of magnetic TIs is introduced, and the recently discovered magnetic TI candidates with intrinsic magnetizations are discussed in detail. Moreover, future research perspectives on these novel topological quantum effects are also evaluated.
Collapse
Affiliation(s)
- Fucong Fei
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Shuai Zhang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Minhao Zhang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Syed Adil Shah
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Fengqi Song
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Xuefeng Wang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Baigeng Wang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
4
|
Wang HW, Fu B, Shen SQ. Anomalous Temperature Dependence of Quantum Correction to the Conductivity of Magnetic Topological Insulators. PHYSICAL REVIEW LETTERS 2020; 124:206603. [PMID: 32501096 DOI: 10.1103/physrevlett.124.206603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 04/21/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Quantum transport in magnetic topological insulators reveals a strong interplay between magnetism and topology of electronic band structures. A recent experiment on magnetically doped topological insulator Bi_{2}Se_{3} thin films showed the anomalous temperature dependence of the magnetoconductivity while their field dependence presents a clear signature of weak antilocalization [Tkac et al., Phys. Rev. Lett. 123, 036406 (2019)PRLTAO0031-900710.1103/PhysRevLett.123.036406]. Here, we demonstrate that the tiny mass of the surface electrons induced by the bulk magnetization leads to a temperature-dependent correction to the π Berry phase and generates a decoherence mechanism to the phase coherence length of the surface electrons. As a consequence, the quantum correction to conductivity can exhibit nonmonotonic behavior by decreasing the temperature. This effect is attributed to the close relation of the Berry phase and quantum interference of the topological surface electrons in quantum topological materials.
Collapse
Affiliation(s)
- Huan-Wen Wang
- Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Bo Fu
- Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Shun-Qing Shen
- Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
5
|
Dulal RP, Dahal BR, Forbes A, Bhattarai N, Pegg IL, Philip J. Weak localization and small anomalous Hall conductivity in ferromagnetic Weyl semimetal Co 2TiGe. Sci Rep 2019; 9:3342. [PMID: 30833580 PMCID: PMC6399263 DOI: 10.1038/s41598-019-39037-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/27/2018] [Indexed: 11/29/2022] Open
Abstract
Several cobalt-based Heusler alloys have been predicted to exhibit Weyl Semimetal behavior due to time reversal symmetry breaking. Co2TiGe is one of the predicted ferromagnetic Weyl semimetals. In this work, we report weak localization and small anomalous Hall conductivity in half-metallic Co2TiGe thin films grown by molecular beam epitaxy. The longitudinal resistivity shows semimetallic behavior. Elaborate analysis of longitudinal magnetoconductance shows the presence of a weak localization quantum correction present even up to room temperature and reduction in dephasing length at lower temperature. Negative longitudinal magnetoresistance is observed from 5 to 300 K, but at 300 K magnetoresistance becomes positive above 0.5 T magnetic field. The anomalous Hall effect has been investigated in these thin films. The measured anomalous Hall conductivity decreases with increasing temperature, and a small anomalous Hall conductivity has been measured at various temperatures which may be arising due to both intrinsic and extrinsic mechanisms.
Collapse
Affiliation(s)
- Rajendra P Dulal
- Department of Physics, The Catholic University of America, Washington, DC, 20064, USA
- The Vitreous State Laboratory, The Catholic University of America, Washington, DC, 20064, USA
| | - Bishnu R Dahal
- Department of Physics, South Dakota State University, Brookings, SD, 57007, USA
| | - Andrew Forbes
- Department of Physics, The Catholic University of America, Washington, DC, 20064, USA
- The Vitreous State Laboratory, The Catholic University of America, Washington, DC, 20064, USA
| | - Niraj Bhattarai
- Department of Physics, The Catholic University of America, Washington, DC, 20064, USA
- The Vitreous State Laboratory, The Catholic University of America, Washington, DC, 20064, USA
| | - Ian L Pegg
- Department of Physics, The Catholic University of America, Washington, DC, 20064, USA
- The Vitreous State Laboratory, The Catholic University of America, Washington, DC, 20064, USA
| | - John Philip
- Department of Physics, The Catholic University of America, Washington, DC, 20064, USA.
- The Vitreous State Laboratory, The Catholic University of America, Washington, DC, 20064, USA.
| |
Collapse
|