1
|
Fulton J, Thenabadu M, Teh RY, Reid MD. Weak versus Deterministic Macroscopic Realism, and Einstein-Podolsky-Rosen's Elements of Reality. ENTROPY (BASEL, SWITZERLAND) 2023; 26:11. [PMID: 38275490 PMCID: PMC11154650 DOI: 10.3390/e26010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 01/27/2024]
Abstract
The violation of a Leggett-Garg inequality confirms the incompatibility between quantum mechanics and the combined premises (called macro-realism) of macroscopic realism (MR) and noninvasive measurability (NIM). Arguments can be given that the incompatibility arises because MR fails for systems in a superposition of macroscopically distinct states-or else, that NIM fails. In this paper, we consider a strong negation of macro-realism, involving superpositions of coherent states, where the NIM premise is replaced by Bell's locality premise. We follow recent work and propose the validity of a subset of Einstein-Podolsky-Rosen (EPR) and Leggett-Garg premises, referred to as weak macroscopic realism (wMR). In finding consistency with wMR, we identify that the Leggett-Garg inequalities are violated because of failure of both MR and NIM, but also that both are valid in a weaker (less restrictive) sense. Weak MR is distinguished from deterministic macroscopic realism (dMR) by recognizing that a measurement involves a reversible unitary interaction that establishes the measurement setting. Weak MR posits that a predetermined value for the outcome of a measurement can be attributed to the system after the interaction, when the measurement setting is experimentally specified. An extended definition of wMR considers the "element of reality" defined by EPR for system A, where one can predict with certainty the outcome of a measurement on A by performing a measurement on system B. Weak MR posits that this element of reality exists once the unitary interaction determining the measurement setting at B has occurred. We demonstrate compatibility of systems violating Leggett-Garg inequalities with wMR but point out that dMR has been shown to be falsifiable. Other tests of wMR are proposed, the predictions of wMR agreeing with quantum mechanics. Finally, we compare wMR with macro-realism models discussed elsewhere. An argument in favour of wMR is presented: wMR resolves a potential contradiction pointed out by Leggett and Garg between failure of macro-realism and assumptions intrinsic to quantum measurement theory.
Collapse
Affiliation(s)
| | | | | | - Margaret D. Reid
- Centre for Quantum Science and Technology Theory, Swinburne University of Technology, Melbourne 3122, Australia; (J.F.); (M.T.); (R.Y.T.)
| |
Collapse
|
2
|
Kotler S, Peterson GA, Shojaee E, Lecocq F, Cicak K, Kwiatkowski A, Geller S, Glancy S, Knill E, Simmonds RW, Aumentado J, Teufel JD. Direct observation of deterministic macroscopic entanglement. Science 2021; 372:622-625. [DOI: 10.1126/science.abf2998] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/04/2021] [Indexed: 11/02/2022]
Affiliation(s)
- Shlomi Kotler
- National Institute of Standards and Technology, Boulder, CO 80305, USA
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Gabriel A. Peterson
- National Institute of Standards and Technology, Boulder, CO 80305, USA
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Ezad Shojaee
- National Institute of Standards and Technology, Boulder, CO 80305, USA
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Florent Lecocq
- National Institute of Standards and Technology, Boulder, CO 80305, USA
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Katarina Cicak
- National Institute of Standards and Technology, Boulder, CO 80305, USA
| | - Alex Kwiatkowski
- National Institute of Standards and Technology, Boulder, CO 80305, USA
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Shawn Geller
- National Institute of Standards and Technology, Boulder, CO 80305, USA
- Department of Physics, University of Colorado, Boulder, CO 80309, USA
| | - Scott Glancy
- National Institute of Standards and Technology, Boulder, CO 80305, USA
| | - Emanuel Knill
- National Institute of Standards and Technology, Boulder, CO 80305, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, CO 80309, USA
| | | | - José Aumentado
- National Institute of Standards and Technology, Boulder, CO 80305, USA
| | - John D. Teufel
- National Institute of Standards and Technology, Boulder, CO 80305, USA
| |
Collapse
|
3
|
Experimental demonstration of Einstein-Podolsky-Rosen entanglement in rotating coordinate space. Sci Bull (Beijing) 2020; 65:280-285. [PMID: 36659092 DOI: 10.1016/j.scib.2019.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/22/2019] [Accepted: 10/31/2019] [Indexed: 01/21/2023]
Abstract
Einstein-Podolsky-Rosen (EPR) entanglement involving a pair of particles entangled in their positions and momenta is of special interest in the field of quantum information. Previously, EPR entanglement has been studied in different physical systems but in fixed coordinate spaces. Here, we demonstrate an experiment of ghost imaging and ghost interference in rotated position-momentum spaces by using position-momentum entangled photons generated from a hot atomic ensemble. By using different image objects, the measured position-momentum correlations exhibit intriguing dynamics, including gradual decrease and axis-independent EPR entanglement. The reported results on manipulating the EPR entanglement in rotating coordinate spaces hold promise in quantum communication and distant quantum image processing.
Collapse
|