1
|
Koskelo J, Reining L, Gatti M. Short-Range Excitonic Phenomena in Low-Density Metals. PHYSICAL REVIEW LETTERS 2025; 134:046402. [PMID: 39951611 DOI: 10.1103/physrevlett.134.046402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/16/2024] [Indexed: 02/16/2025]
Abstract
Excitonic effects in metals are usually supposed to be weak, because the Coulomb interaction is strongly screened. Here, we investigate the low-density regime of the homogeneous electron gas, where, besides the usual high-energy plasmons, the existence of low-energy excitonic collective modes has recently been suggested. Using the Bethe-Salpeter equation (BSE), we show that indeed low-energy modes appear, thanks to reduced screening at short distances. This requires going beyond common approximations to ab initio BSE calculations, which suffer from a self-polarization error that overscreens the electron-hole interaction. The electron-hole wave function of the low-energy mode shows strong and very anisotropic electron-hole correlation, which speaks for an excitonic character of this mode. The fact that the electron-hole interaction at short distances is at the origin of these phenomena explains why, on the other hand, also the simple adiabatic local density approximation to time-dependent density functional theory can capture these effects. This exotic regime might be found in doped semiconductors and interfaces.
Collapse
Affiliation(s)
- Jaakko Koskelo
- Institut Polytechnique de Paris, LSI, CNRS, CEA/DRF/IRAMIS, École Polytechnique, F-91120 Palaiseau, France
- European Theoretical Spectroscopy Facility, (ETSF)
| | - Lucia Reining
- Institut Polytechnique de Paris, LSI, CNRS, CEA/DRF/IRAMIS, École Polytechnique, F-91120 Palaiseau, France
- European Theoretical Spectroscopy Facility, (ETSF)
| | - Matteo Gatti
- Institut Polytechnique de Paris, LSI, CNRS, CEA/DRF/IRAMIS, École Polytechnique, F-91120 Palaiseau, France
- European Theoretical Spectroscopy Facility, (ETSF)
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette, France
| |
Collapse
|
2
|
Schäfer T. Ground States for Metals from Converged Coupled Cluster Calculations. J Phys Chem Lett 2025; 16:17-23. [PMID: 39690878 PMCID: PMC11726802 DOI: 10.1021/acs.jpclett.4c03134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
Many-electron correlation methods offer a systematic approach to predicting material properties with high precision. However, practically attaining accurate ground-state properties for bulk metals presents significant challenges. In this work, we propose a novel scheme to reach the thermodynamic limit of the total ground-state energy of metals using coupled cluster theory. We demonstrate that the coupling between long-range and short-range contributions to the correlation energy is sufficiently weak, enabling us to restrict long-range contributions to low-energy excitations in a controllable way. Leveraging this insight, we calculated the surface energy of aluminum and platinum (111), providing numerical evidence that coupled cluster theory is well-suited for modeling metallic materials, particularly in surface science. Notably, our results exhibit convergence with respect to finite-size effects, basis-set size, and coupled cluster expansion, yielding excellent agreement with experimental data. This paves the way for more efficient coupled cluster calculations for large systems and a broader utilization of theory in realistic metallic models of materials.
Collapse
Affiliation(s)
- Tobias Schäfer
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße
8-10/136, A-1040 Vienna, Austria
| |
Collapse
|
3
|
Förster A, Bruneval F. Why Does the GW Approximation Give Accurate Quasiparticle Energies? The Cancellation of Vertex Corrections Quantified. J Phys Chem Lett 2024; 15:12526-12534. [PMID: 39670751 DOI: 10.1021/acs.jpclett.4c03126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Hedin's GW approximation to the electronic self-energy has been impressively successful in calculating quasiparticle energies, such as ionization potentials, electron affinities, or electronic band structures. The success of this fairly simple approximation has been ascribed to the cancellation of the so-called vertex corrections that go beyond the GW approximation. This claim is mostly based on past calculations using vertex corrections within the crude local-density approximation. Here, we explore a wide variety of nonlocal vertex corrections in the polarizability and the self-energy, using first-order approximations or infinite summations to all orders. In particular, we use vertices based on statically screened interactions like in the Bethe-Salpeter equation. We demonstrate on realistic molecular systems that the two vertices in Hedin's equation essentially compensate. We further show that consistency between the two vertices is crucial for obtaining realistic electronic properties. We finally consider increasingly large clusters and extrapolate that our conclusions about the compensation of the two vertices would hold for extended systems.
Collapse
Affiliation(s)
- Arno Förster
- Theoretical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Fabien Bruneval
- Université Paris-Saclay, CEA, Service de recherche en Corrosion et Comportement des Matériaux, SRMP, 91191 Gif-sur-Yvette, France
| |
Collapse
|
4
|
Masios N, Hummel F, Grüneis A, Irmler A. Investigating the Basis Set Convergence of Diagrammatically Decomposed Coupled-Cluster Correlation Energy Contributions for the Uniform Electron Gas. J Chem Theory Comput 2024; 20:5937-5950. [PMID: 38976839 PMCID: PMC11270826 DOI: 10.1021/acs.jctc.4c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024]
Abstract
We investigate the convergence of coupled-cluster (CC) correlation energies and related quantities with respect to the employed basis set size for the uniform electron gas (UEG) to gain a better understanding of the basis set incompleteness error (BSIE). To this end, coupled-cluster doubles (CCD) theory is applied to the three-dimensional UEG for a range of densities, basis set sizes, and electron numbers. We present a detailed analysis of individual diagrammatically decomposed contributions to the amplitudes at the level of CCD theory. In particular, we show that only two terms from the amplitude equations contribute to the asymptotic large-momentum behavior of the transition structure factor, corresponding to the cusp region at short interelectronic distances. However, due to the coupling present in the amplitude equations, all decomposed correlation energy contributions show the same asymptotic convergence behavior to the complete basis set limit. These findings provide an additional rationale for the success of a recently proposed correction to the BSIE of CC theory. Lastly, we examine the BSIE in the CCD plus perturbative triples [CCD(T)] method, as well as in the newly proposed CCD plus complete perturbative triples [CCD(cT)] method.
Collapse
Affiliation(s)
- Nikolaos Masios
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria
| | - Felix Hummel
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria
| | - Andreas Grüneis
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria
| | - Andreas Irmler
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria
| |
Collapse
|
5
|
Masios N, Irmler A, Schäfer T, Grüneis A. Averting the Infrared Catastrophe in the Gold Standard of Quantum Chemistry. PHYSICAL REVIEW LETTERS 2023; 131:186401. [PMID: 37977639 DOI: 10.1103/physrevlett.131.186401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/27/2023] [Indexed: 11/19/2023]
Abstract
Coupled-cluster theories can be used to compute ab initio electronic correlation energies of real materials with systematically improvable accuracy. However, the widely used coupled cluster singles and doubles plus perturbative triples [CCSD(T)] method is only applicable to insulating materials. For zero-gap materials the truncation of the underlying many-body perturbation expansion leads to an infrared catastrophe. Here, we present a novel perturbative triples formalism denoted as (cT) that yields convergent correlation energies in metallic systems. Furthermore, the computed correlation energies for the three-dimensional uniform electron gas at metallic densities are in good agreement with quantum Monte Carlo results. At the same time the newly proposed method retains all desirable properties of CCSD(T) such as its accuracy for insulating systems as well as its low computational cost compared to a full inclusion of the triples. This paves the way for ab initio calculations of real metals with chemical accuracy.
Collapse
Affiliation(s)
- Nikolaos Masios
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria
| | - Andreas Irmler
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria
| | - Tobias Schäfer
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria
| | - Andreas Grüneis
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria
| |
Collapse
|
6
|
Mihm TN, Weiler L, Shepherd JJ. How the Exchange Energy Can Affect the Power Laws Used to Extrapolate the Coupled Cluster Correlation Energy to the Thermodynamic Limit. J Chem Theory Comput 2023; 19:1686-1697. [PMID: 36918372 PMCID: PMC10061680 DOI: 10.1021/acs.jctc.2c00737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Indexed: 03/16/2023]
Abstract
Finite size error is commonly removed from coupled cluster theory calculations by N-1 extrapolations over correlation energy calculations of different system sizes (N), where the N-1 scaling comes from the total energy rather than the correlation energy. However, previous studies in the quantum Monte Carlo community suggest an exchange-energy-like power law of N-2/3 should also be present in the correlation energy when using the conventional Coulomb interaction. The rationale for this is that the total energy goes as N-1 and the exchange energy goes as N-2/3; thus, the correlation energy should be a combination of these two power laws. Further, in coupled cluster theory, these power laws are related to the low G scaling of the transition structure factor, S(G), which is a property of the coupled cluster wave function calculated from the amplitudes. We show here that data from coupled cluster doubles calculations on the uniform electron gas fit a function with a low G behavior of S(G) ∼ G. The prefactor for this linear term is derived from the exchange energy to be consistent with an N-2/3 power law at large N. Incorporating the exchange structure factor into the transition structure factor results in a combined structure factor of S(G) ∼ G2, consistent with an N-1 scaling of the exchange-correlation energy. We then look for the presence of an N-2/3 power law in the energy. To do so, we first develop a plane-wave cutoff scheme with less noise than the traditional basis set used for the uniform electron gas. Then, we collect data from a wide range of electron numbers and densities to systematically test five methods using N-1 scaling, N-2/3 scaling, or combinations of both scaling behaviors. We find that power laws that incorporate both N-1 and N-2/3 scaling perform better than either alone, especially when the prefactor for N-2/3 scaling can be found from exchange energy calculations.
Collapse
Affiliation(s)
- Tina N. Mihm
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| | - Laura Weiler
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| | - James J. Shepherd
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| |
Collapse
|
7
|
Spadetto E, Philipsen PHT, Förster A, Visscher L. Toward Pair Atomic Density Fitting for Correlation Energies with Benchmark Accuracy. J Chem Theory Comput 2023; 19:1499-1516. [PMID: 36787494 PMCID: PMC10018742 DOI: 10.1021/acs.jctc.2c01201] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Indexed: 02/16/2023]
Abstract
Pair atomic density fitting (PADF) has been identified as a promising strategy to reduce the scaling with system size of quantum chemical methods for the calculation of the correlation energy like the direct random-phase approximation (RPA) or second-order Møller-Plesset perturbation theory (MP2). PADF can however introduce large errors in correlation energies as the two-electron interaction energy is not guaranteed to be bounded from below. This issue can be partially alleviated by using very large fit sets, but this comes at the price of reduced efficiency and having to deal with near-linear dependencies in the fit set. One posibility is to use global density fitting (DF), but in this work, we introduce an alternative methodology to overcome this problem that preserves the intrinsically favorable scaling of PADF. We first regularize the Fock matrix by projecting out parts of the basis set which gives rise to orbital products that are hard to describe by PADF. After having thus obtained a reliable self-consistent field solution, we then also apply this projector to the orbital coefficient matrix to improve the precision of PADF-MP2 and PADF-RPA. We systematically assess the accuracy of this new approach in a numerical atomic orbital framework using Slater type orbitals (STO) and correlation consistent Gaussian type basis sets up to quintuple-ζ quality for systems with more than 200 atoms. For the small and medium systems in the S66 database we show the maximum deviation of PADF-MP2 and PADF-RPA relative correlation energies to DF-MP2 and DF-RPA reference results to be 0.07 and 0.14 kcal/mol, respectively. When the new projector method is used, the errors only slightly increase for large molecules and also when moderately sized fit sets are used the resulting errors are well under control. Finally, we demonstrate the computational efficiency of our algorithm by calculating the interaction energies of large, non-covalently bound complexes with more than 1000 atoms and 20000 atomic orbitals at the RPA@PBE/CC-pVTZ level of theory.
Collapse
Affiliation(s)
- Edoardo Spadetto
- Software
for Chemistry and Materials NV, NL-1081HV Amsterdam, The Netherlands
| | | | - Arno Förster
- Software
for Chemistry and Materials NV, NL-1081HV Amsterdam, The Netherlands
- Theoretical
Chemistry, Vrije Universiteit, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
| | - Lucas Visscher
- Theoretical
Chemistry, Vrije Universiteit, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
| |
Collapse
|
8
|
Förster A. Assessment of the Second-Order Statically Screened Exchange Correction to the Random Phase Approximation for Correlation Energies. J Chem Theory Comput 2022; 18:5948-5965. [PMID: 36150190 PMCID: PMC9558381 DOI: 10.1021/acs.jctc.2c00366] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
With increasing interelectronic distance, the screening
of the
electron–electron interaction by the presence of other electrons
becomes the dominant source of electron correlation. This effect is
described by the random phase approximation (RPA) which is therefore
a promising method for the calculation of weak interactions. The success
of the RPA relies on the cancellation of errors, which can be traced
back to the violation of the crossing symmetry of the 4-point vertex,
leading to strongly overestimated total correlation energies. By the
addition of second-order screened exchange (SOSEX) to the correlation
energy, this issue is substantially reduced. In the adiabatic connection
(AC) SOSEX formalism, one of the two electron–electron interaction
lines in the second-order exchange term is dynamically screened (SOSEX(W, vc)). A
related SOSEX expression in which both electron–electron interaction
lines are statically screened (SOSEX(W(0), W(0))) is obtained from the G3W2 contribution to the electronic self-energy. In contrast to SOSEX(W, vc), the
evaluation of this correlation energy expression does not require
an expensive numerical frequency integration and is therefore advantageous
from a computational perspective. We compare the accuracy of the statically
screened variant to RPA and RPA+SOSEX(W, vc) for a wide range of chemical
reactions. While both methods fail for barrier heights, SOSEX(W(0), W(0)) agrees very well with SOSEX(W, vc) for
charged excitations and noncovalent interactions where they lead to
major improvements over RPA.
Collapse
Affiliation(s)
- Arno Förster
- Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1083, NL-1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Neufeld VA, Ye HZ, Berkelbach TC. Ground-State Properties of Metallic Solids from Ab Initio Coupled-Cluster Theory. J Phys Chem Lett 2022; 13:7497-7503. [PMID: 35939802 DOI: 10.1021/acs.jpclett.2c01828] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metallic solids are an enormously important class of materials, but they are a challenging target for accurate wave function-based electronic structure theories and have not been studied in great detail by such methods. Here, we use coupled-cluster theory with single and double excitations (CCSD) to study the structure of solid lithium and aluminum using optimized Gaussian basis sets. We calculate the equilibrium lattice constant, bulk modulus, and cohesive energy and compare them to experimental values, finding accuracy comparable to common density functionals. Because the quantum chemical "gold standard" CCSD(T) (CCSD with perturbative triple excitations) is inapplicable to metals in the thermodynamic limit, we test two approximate improvements to CCSD, which are found to improve the results.
Collapse
Affiliation(s)
- Verena A Neufeld
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Hong-Zhou Ye
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Timothy C Berkelbach
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, United States
| |
Collapse
|
10
|
Schäfer T, Gallo A, Irmler A, Hummel F, Grüneis A. Surface science using coupled cluster theory via local Wannier functions and in-RPA-embedding: The case of water on graphitic carbon nitride. J Chem Phys 2021; 155:244103. [PMID: 34972356 DOI: 10.1063/5.0074936] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A first-principles study of the adsorption of a single water molecule on a layer of graphitic carbon nitride is reported employing an embedding approach for many-electron correlation methods. To this end, a plane-wave based implementation to obtain intrinsic atomic orbitals and Wannier functions for arbitrary localization potentials is presented. In our embedding scheme, the localized occupied orbitals allow for a separate treatment of short-range and long-range correlation contributions to the adsorption energy by a fragmentation of the simulation cell. In combination with unoccupied natural orbitals, the coupled cluster ansatz with single, double, and perturbative triple particle-hole excitation operators is used to capture the correlation in local fragments centered around the adsorption process. For the long-range correlation, a seamless embedding into the random phase approximation yields rapidly convergent adsorption energies with respect to the local fragment size. Convergence of computed binding energies with respect to the virtual orbital basis set is achieved employing a number of recently developed techniques. Moreover, we discuss fragment size convergence for a range of approximate many-electron perturbation theories. The obtained benchmark results are compared to a number of density functional calculations.
Collapse
Affiliation(s)
- Tobias Schäfer
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, A-1040 Vienna, Austria
| | - Alejandro Gallo
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, A-1040 Vienna, Austria
| | - Andreas Irmler
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, A-1040 Vienna, Austria
| | - Felix Hummel
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, A-1040 Vienna, Austria
| | - Andreas Grüneis
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, A-1040 Vienna, Austria
| |
Collapse
|
11
|
Mihm TN, Schäfer T, Ramadugu SK, Weiler L, Grüneis A, Shepherd JJ. A shortcut to the thermodynamic limit for quantum many-body calculations of metals. NATURE COMPUTATIONAL SCIENCE 2021; 1:801-808. [PMID: 38217186 PMCID: PMC10766528 DOI: 10.1038/s43588-021-00165-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 10/26/2021] [Indexed: 01/15/2024]
Abstract
Computationally efficient and accurate quantum mechanical approximations to solve the many-electron Schrödinger equation are crucial for computational materials science. Methods such as coupled cluster theory show potential for widespread adoption if computational cost bottlenecks can be removed. For example, extremely dense k-point grids are required to model long-range electronic correlation effects, particularly for metals. Although these grids can be made more effective by averaging calculations over an offset (or twist angle), the resultant cost in time for coupled cluster theory is prohibitive. We show here that a single special twist angle can be found using the transition structure factor, which provides the same benefit as twist averaging with one or two orders of magnitude reduction in computational time. We demonstrate that this not only works for metal systems but also is applicable to a broader range of materials, including insulators and semiconductors.
Collapse
Affiliation(s)
- Tina N Mihm
- Department of Chemistry, University of Iowa, Iowa City, Iowa, USA
| | - Tobias Schäfer
- Institute for Theoretical Physics, TU Wien, Vienna, Austria
| | | | - Laura Weiler
- Department of Chemistry, University of Iowa, Iowa City, Iowa, USA
| | | | - James J Shepherd
- Department of Chemistry, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
12
|
Nagy PR, Gyevi-Nagy L, Kállay M. Basis set truncation corrections for improved frozen natural orbital CCSD(T) energies. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1963495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Péter R. Nagy
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - László Gyevi-Nagy
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Mihály Kállay
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
13
|
Irmler A, Gallo A, Grüneis A. Focal-point approach with pair-specific cusp correction for coupled-cluster theory. J Chem Phys 2021; 154:234103. [PMID: 34241257 DOI: 10.1063/5.0050054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a basis set correction scheme for the coupled-cluster singles and doubles (CCSD) method. The scheme is based on employing frozen natural orbitals (FNOs) and diagrammatically decomposed contributions to the electronic correlation energy, which dominate the basis set incompleteness error (BSIE). As recently discussed in the work of Irmler et al. [Phys. Rev. Lett. 123, 156401 (2019)], the BSIE of the CCSD correlation energy is dominated by the second-order Møller-Plesset (MP2) perturbation energy and the particle-particle ladder term. Here, we derive a simple approximation to the BSIE of the particle-particle ladder term that effectively corresponds to a rescaled pair-specific MP2 BSIE, where the scaling factor depends on the spatially averaged correlation hole depth of the coupled-cluster and first-order pair wavefunctions. The evaluation of the derived expressions is simple to implement in any existing code. We demonstrate the effectiveness of the method for the uniform electron gas. Furthermore, we apply the method to coupled-cluster theory calculations of atoms and molecules using FNOs. Employing the proposed correction and an increasing number of FNOs per occupied orbital, we demonstrate for a test set that rapidly convergent closed and open-shell reaction energies, atomization energies, electron affinities, and ionization potentials can be obtained. Moreover, we show that a similarly excellent trade-off between required virtual orbital basis set size and remaining BSIEs can be achieved for the perturbative triples contribution to the CCSD(T) energy employing FNOs and the (T*) approximation.
Collapse
Affiliation(s)
- Andreas Irmler
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria
| | - Alejandro Gallo
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria
| | - Andreas Grüneis
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria
| |
Collapse
|
14
|
Callahan JM, Lange MF, Berkelbach TC. Dynamical correlation energy of metals in large basis sets from downfolding and composite approaches. J Chem Phys 2021; 154:211105. [PMID: 34240964 DOI: 10.1063/5.0049890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Coupled-cluster theory with single and double excitations (CCSD) is a promising ab initio method for the electronic structure of three-dimensional metals, for which second-order perturbation theory (MP2) diverges in the thermodynamic limit. However, due to the high cost and poor convergence of CCSD with respect to basis size, applying CCSD to periodic systems often leads to large basis set errors. In a common "composite" method, MP2 is used to recover the missing dynamical correlation energy through a focal-point correction, but the inadequacy of finite-order perturbation theory for metals raises questions about this approach. Here, we describe how high-energy excitations treated by MP2 can be "downfolded" into a low-energy active space to be treated by CCSD. Comparing how the composite and downfolding approaches perform for the uniform electron gas, we find that the latter converges more quickly with respect to the basis set size. Nonetheless, the composite approach is surprisingly accurate because it removes the problematic MP2 treatment of double excitations near the Fermi surface. Using this method to estimate the CCSD correlation energy in the combined complete basis set and thermodynamic limits, we find that CCSD recovers 85%-90% of the exact correlation energy at rs = 4. We also test the composite approach with the direct random-phase approximation used in place of MP2, yielding a method that is typically (but not always) more cost effective due to the smaller number of orbitals that need to be included in the more expensive CCSD calculation.
Collapse
Affiliation(s)
- James M Callahan
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Malte F Lange
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
15
|
Mihm TN, Yang B, Shepherd JJ. Power Laws Used to Extrapolate the Coupled Cluster Correlation Energy to the Thermodynamic Limit. J Chem Theory Comput 2021; 17:2752-2758. [DOI: 10.1021/acs.jctc.0c01171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tina N. Mihm
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Bingdi Yang
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - James J. Shepherd
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
16
|
Mihm TN, Van Benschoten WZ, Shepherd JJ. Accelerating convergence to the thermodynamic limit with twist angle selection applied to methods beyond many-body perturbation theory. J Chem Phys 2021; 154:024113. [DOI: 10.1063/5.0033408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Tina N. Mihm
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, USA
- University of Iowa Informatics Initiative, University of Iowa, Iowa City, Iowa 52242-1294, USA
| | - William Z. Van Benschoten
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, USA
- University of Iowa Informatics Initiative, University of Iowa, Iowa City, Iowa 52242-1294, USA
| | - James J. Shepherd
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, USA
- University of Iowa Informatics Initiative, University of Iowa, Iowa City, Iowa 52242-1294, USA
| |
Collapse
|
17
|
Morales MA, Malone FD. Accelerating the convergence of auxiliary-field quantum Monte Carlo in solids with optimized Gaussian basis sets. J Chem Phys 2020; 153:194111. [DOI: 10.1063/5.0025390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Miguel A. Morales
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Fionn D. Malone
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
18
|
Bircher MP, Villard J, Rothlisberger U. Efficient Treatment of Correlation Energies at the Basis-Set Limit by Monte Carlo Summation of Continuum States. J Chem Theory Comput 2020; 16:6550-6559. [PMID: 32915565 PMCID: PMC7584365 DOI: 10.1021/acs.jctc.0c00724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Indexed: 11/28/2022]
Abstract
The calculation of electron correlation is vital for the description of atomistic phenomena in physics, chemistry, and biology. However, accurate wavefunction-based methods exhibit steep scaling and often sluggish convergence with respect to the basis set at hand. Because of their delocalization and ease of extrapolation to the basis-set limit, plane waves would be ideally suited for the calculation of basis-set limit correlation energies. However, the routine use of correlated wavefunction approaches in a plane-wave basis set is hampered by prohibitive scaling due to a large number of virtual continuum states and has not been feasible for all but the smallest systems, even if substantial computational resources are available and methods with comparably beneficial scaling, such as the Møller-Plesset perturbation theory to second order (MP2), are used. Here, we introduce a stochastic sampling of the MP2 integrand based on Monte Carlo summation over continuum orbitals, which allows for speedups of up to a factor of 1000. Given a fixed number of sampling points, the resulting algorithm is dominated by a flat scaling of ∼ O ( N 2 ) . Absolute correlation energies are accurate to <0.1 kcal/mol with respect to conventional calculations for several hundreds of electrons. This allows for the calculation of unbiased basis-set limit correlation energies for systems containing hundreds of electrons with unprecedented efficiency gains based on a straightforward treatment of continuum contributions.
Collapse
Affiliation(s)
- Martin P. Bircher
- Computational
and Soft Matter Physics, Universität
Wien, Sensengasse 8/9, A-1090 Wien, Austria
| | - Justin Villard
- Laboratory
of Computational Chemistry and Biochemistry, Institut des Sciences
et Ingénierie Chimiques, Ecole Polytechnique
Fédérale de Lausanne (EPFL), Av. F.A. Forel 2, CH-1015 Lausanne, Switzerland
| | - Ursula Rothlisberger
- Laboratory
of Computational Chemistry and Biochemistry, Institut des Sciences
et Ingénierie Chimiques, Ecole Polytechnique
Fédérale de Lausanne (EPFL), Av. F.A. Forel 2, CH-1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Giner E, Scemama A, Loos PF, Toulouse J. A basis-set error correction based on density-functional theory for strongly correlated molecular systems. J Chem Phys 2020; 152:174104. [DOI: 10.1063/5.0002892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Emmanuel Giner
- Laboratoire de Chimie Théorique (UMR 7616), Sorbonne Université, CNRS, Paris, France
| | - Anthony Scemama
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Toulouse
- Laboratoire de Chimie Théorique (UMR 7616), Sorbonne Université, CNRS, Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|