1
|
Wells L, Müller T, Stevenson RM, Skiba-Szymanska J, Ritchie DA, Shields AJ. Coherent light scattering from a telecom C-band quantum dot. Nat Commun 2023; 14:8371. [PMID: 38102132 PMCID: PMC10724139 DOI: 10.1038/s41467-023-43757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Quantum networks have the potential to transform secure communication via quantum key distribution and enable novel concepts in distributed quantum computing and sensing. Coherent quantum light generation at telecom wavelengths is fundamental for fibre-based network implementations, but Fourier-limited emission and subnatural linewidth photons have so far only been reported from systems operating in the visible to near-infrared wavelength range. Here, we use InAs/InP quantum dots to demonstrate photons with coherence times much longer than the Fourier limit at telecom wavelength via elastic scattering of excitation laser photons. Further, we show that even the inelastically scattered photons have coherence times within the error bars of the Fourier limit. Finally, we make direct use of the minimal attenuation in fibre for these photons by measuring two-photon interference after 25 km of fibre, demonstrating finite interference visibility for photons emitted about 100,000 excitation cycles apart.
Collapse
Affiliation(s)
- L Wells
- Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge, CB4 0GZ, UK
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - T Müller
- Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge, CB4 0GZ, UK.
| | - R M Stevenson
- Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge, CB4 0GZ, UK
| | - J Skiba-Szymanska
- Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge, CB4 0GZ, UK
| | - D A Ritchie
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - A J Shields
- Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge, CB4 0GZ, UK
| |
Collapse
|
2
|
Chen D, Fröch JE, Ru S, Cai H, Wang N, Adamo G, Scott J, Li F, Zheludev N, Aharonovich I, Gao W. Quantum Interference of Resonance Fluorescence from Germanium-Vacancy Color Centers in Diamond. NANO LETTERS 2022; 22:6306-6312. [PMID: 35913802 DOI: 10.1021/acs.nanolett.2c01959] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Resonance fluorescence from a quantum emitter is an ideal source to extract indistinguishable photons. By using the cross-polarization to suppress the laser scattering, we observed resonance fluorescence from GeV color centers in diamond at cryogenic temperature. The Fourier-transform-limited line width emission with T2/2T1 ∼ 0.86 allows for two-photon interference based on single GeV color center. Under pulsed excitation, the separated photons exhibit a Hong-Ou-Mandel quantum interference above classical limit, whereas the continuous-wave excitation leads to a coalescence time window of 1.05 radiative lifetime. In addition, we demonstrated a single-shot readout of spin states with a fidelity of 74%. Our experiments lay down the foundation for building a quantum network with GeV color centers in diamond.
Collapse
Affiliation(s)
- Disheng Chen
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore
| | - Johannes E Fröch
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Shihao Ru
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- Shaanxi Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongbing Cai
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore
| | - Naizhou Wang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore
| | - Giorgio Adamo
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore
| | - John Scott
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Fuli Li
- Shaanxi Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Nikolay Zheludev
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore
- Optoelectronics Research Centre, University of Southampton, Hampshire, SO17 1BJ, United Kingdom
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Weibo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| |
Collapse
|
3
|
Koong ZX, Cygorek M, Scerri E, Santana TS, Park SI, Song JD, Gauger EM, Gerardot BD. Coherence in cooperative photon emission from indistinguishable quantum emitters. SCIENCE ADVANCES 2022; 8:eabm8171. [PMID: 35302855 PMCID: PMC8932659 DOI: 10.1126/sciadv.abm8171] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Photon-mediated interactions between atoms can arise via coupling to a common electromagnetic mode or by quantum interference. Here, we probe the role of coherence in cooperative emission arising from two distant but indistinguishable solid-state emitters because of path erasure. The primary signature of cooperative emission, the emergence of "bunching" at zero delay in an intensity correlation experiment, is used to characterize the indistinguishability of the emitters, their dephasing, and the degree of correlation in the joint system that can be coherently controlled. In a stark departure from a pair of uncorrelated emitters, in Hong-Ou-Mandel-type interference measurements, we observe photon statistics from a pair of indistinguishable emitters resembling that of a weak coherent state from an attenuated laser. Our experiments establish techniques to control and characterize cooperative behavior between matter qubits using the full quantum optics toolbox, a key step toward realizing large-scale quantum photonic networks.
Collapse
Affiliation(s)
- Zhe Xian Koong
- SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Moritz Cygorek
- SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Eleanor Scerri
- SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Ted S. Santana
- Centro de Cîencias Naturais e Humanas, Universidade Federal do ABC, Santo Andrè, São Paulo 09210-580, Brazil
| | - Suk In Park
- Center for Opto-Electronic Materials and Devices Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jin Dong Song
- Center for Opto-Electronic Materials and Devices Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Erik M. Gauger
- SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Brian D. Gerardot
- SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| |
Collapse
|
4
|
Lv Y, Yin C, Zhang C, Wang X, Yu ZG, Xiao M. Exciton-acoustic phonon coupling revealed by resonant excitation of single perovskite nanocrystals. Nat Commun 2021; 12:2192. [PMID: 33850150 PMCID: PMC8044187 DOI: 10.1038/s41467-021-22486-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/16/2021] [Indexed: 11/08/2022] Open
Abstract
Single perovskite nanocrystals have attracted great research attention very recently due to their potential quantum-information applications, which critically depend on the development of powerful optical techniques to resolve delicate exciton photophysics. Here we have realized resonant and near-resonant excitations of single perovskite CsPbI3 nanocrystals, with the scattered laser light contributing to only ~10% of the total collected signals. This allows us to estimate an ultranarrow photoluminescence excitation linewidth of ~11.32 µeV for the emission state of a single CsPbI3 nanocrystal, corresponding to an exciton dephasing time of ~116.29 ps. Meanwhile, size-quantized acoustic phonons can be resolved from a single CsPbI3 nanocrystal, whose coupling with the exciton is proposed to arise from the piezoelectric potential. The ability to collect resonance fluorescence from single CsPbI3 nanocrystals, with the subsequent revelation of exciton-acoustic phonon coupling, has marked a critical step towards their steady advancement into superior quantum-light sources.
Collapse
Affiliation(s)
- Yan Lv
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Chunyang Yin
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Xiaoyong Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.
| | - Zhi-Gang Yu
- ISP/Applied Sciences Laboratory, Washington State University, Spokane, WA, 99210, USA.
- Department of Physics and Astronomy, Washington State University, Pullman, WA, 99164, USA.
| | - Min Xiao
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.
- Department of Physics, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
5
|
Koong ZX, Scerri E, Rambach M, Cygorek M, Brotons-Gisbert M, Picard R, Ma Y, Park SI, Song JD, Gauger EM, Gerardot BD. Coherent Dynamics in Quantum Emitters under Dichromatic Excitation. PHYSICAL REVIEW LETTERS 2021; 126:047403. [PMID: 33576652 DOI: 10.1103/physrevlett.126.047403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
We characterize the coherent dynamics of a two-level quantum emitter driven by a pair of symmetrically detuned phase-locked pulses. The promise of dichromatic excitation is to spectrally isolate the excitation laser from the quantum emission, enabling background-free photon extraction from the emitter. While excitation is not possible without spectral overlap between the exciting pulse and the quantum emitter transition for ideal two-level systems due to cancellation of the accumulated pulse area, we find that any additional interactions that interfere with cancellation of the accumulated pulse area may lead to a finite stationary population inversion. Our spectroscopic results of a solid-state two-level system show that, while coupling to lattice vibrations helps to improve the inversion efficiency up to 50% under symmetric driving, coherent population control and a larger amount of inversion are possible using asymmetric dichromatic excitation, which we achieve by adjusting the ratio of the intensities between the red- and blue-detuned pulses. Our measured results, supported by simulations using a real-time path-integral method, offer a new perspective toward realizing efficient, background-free photon generation and extraction.
Collapse
Affiliation(s)
- Z X Koong
- SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - E Scerri
- SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - M Rambach
- SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - M Cygorek
- SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - M Brotons-Gisbert
- SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - R Picard
- SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Y Ma
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - S I Park
- Center for Opto-Electronic Materials and Devices Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - J D Song
- Center for Opto-Electronic Materials and Devices Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - E M Gauger
- SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - B D Gerardot
- SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
6
|
Phillips CL, Brash AJ, McCutcheon DPS, Iles-Smith J, Clarke E, Royall B, Skolnick MS, Fox AM, Nazir A. Photon Statistics of Filtered Resonance Fluorescence. PHYSICAL REVIEW LETTERS 2020; 125:043603. [PMID: 32794814 DOI: 10.1103/physrevlett.125.043603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Spectral filtering of resonance fluorescence is widely employed to improve single photon purity and indistinguishability by removing unwanted backgrounds. For filter bandwidths approaching the emitter linewidth, complex behavior is predicted due to preferential transmission of components with differing photon statistics. We probe this regime using a Purcell-enhanced quantum dot in both weak and strong excitation limits, finding excellent agreement with an extended sensor theory model. By changing only the filter width, the photon statistics can be transformed between antibunched, bunched, or Poissonian. Our results verify that strong antibunching and a subnatural linewidth cannot simultaneously be observed, providing new insight into the nature of coherent scattering.
Collapse
Affiliation(s)
- Catherine L Phillips
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| | - Alistair J Brash
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| | - Dara P S McCutcheon
- Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1FD, United Kingdom
| | - Jake Iles-Smith
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
- Department of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Department of Electrical and Electronic Engineering, The University of Manchester, Sackville Street Building, Manchester M1 3BB, United Kingdom
| | - Edmund Clarke
- EPSRC National Epitaxy Facility, Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Benjamin Royall
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| | - Maurice S Skolnick
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| | - A Mark Fox
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| | - Ahsan Nazir
- Department of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
7
|
Löbl MC, Spinnler C, Javadi A, Zhai L, Nguyen GN, Ritzmann J, Midolo L, Lodahl P, Wieck AD, Ludwig A, Warburton RJ. Radiative Auger process in the single-photon limit. NATURE NANOTECHNOLOGY 2020; 15:558-562. [PMID: 32541943 DOI: 10.1038/s41565-020-0697-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
In a multi-electron atom, an excited electron can decay by emitting a photon. Typically, the leftover electrons are in their ground state. In a radiative Auger process, the leftover electrons are in an excited state and a redshifted photon is created1-4. In a semiconductor quantum dot, radiative Auger is predicted for charged excitons5. Here we report the observation of radiative Auger on trions in single quantum dots. For a trion, a photon is created on electron-hole recombination, leaving behind a single electron. The radiative Auger process promotes this additional (Auger) electron to a higher shell of the quantum dot. We show that the radiative Auger effect is a powerful probe of this single electron: the energy separations between the resonance fluorescence and the radiative Auger emission directly measure the single-particle splittings of the electronic states in the quantum dot with high precision. In semiconductors, these single-particle splittings are otherwise hard to access by optical means as particles are excited typically in pairs, as excitons. After the radiative Auger emission, the Auger carrier relaxes back to the lowest shell. Going beyond the original theoretical proposals, we show how applying quantum optics techniques to the radiative Auger photons gives access to the single-electron dynamics, notably relaxation and tunnelling. This is also hard to access by optical means: even for quasi-resonant p-shell excitation, electron relaxation takes place in the presence of a hole, complicating the relaxation dynamics. The radiative Auger effect can be exploited in other semiconductor nanostructures and quantum emitters in the solid state to determine the energy levels and the dynamics of a single carrier.
Collapse
Affiliation(s)
- Matthias C Löbl
- Department of Physics, University of Basel, Basel, Switzerland.
| | | | - Alisa Javadi
- Department of Physics, University of Basel, Basel, Switzerland
| | - Liang Zhai
- Department of Physics, University of Basel, Basel, Switzerland
| | - Giang N Nguyen
- Department of Physics, University of Basel, Basel, Switzerland
- Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Bochum, Germany
| | - Julian Ritzmann
- Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Bochum, Germany
| | - Leonardo Midolo
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Peter Lodahl
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Andreas D Wieck
- Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Bochum, Germany
| | - Arne Ludwig
- Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Bochum, Germany
| | | |
Collapse
|
8
|
Brash AJ, Iles-Smith J, Phillips CL, McCutcheon DPS, O'Hara J, Clarke E, Royall B, Wilson LR, Mørk J, Skolnick MS, Fox AM, Nazir A. Light Scattering from Solid-State Quantum Emitters: Beyond the Atomic Picture. PHYSICAL REVIEW LETTERS 2019; 123:167403. [PMID: 31702333 DOI: 10.1103/physrevlett.123.167403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Indexed: 06/10/2023]
Abstract
Coherent scattering of light by a single quantum emitter is a fundamental process at the heart of many proposed quantum technologies. Unlike atomic systems, solid-state emitters couple to their host lattice by phonons. Using a quantum dot in an optical nanocavity, we resolve these interactions in both time and frequency domains, going beyond the atomic picture to develop a comprehensive model of light scattering from solid-state emitters. We find that even in the presence of a low-Q cavity with high Purcell enhancement, phonon coupling leads to a sideband that is completely insensitive to excitation conditions and to a nonmonotonic relationship between laser detuning and coherent fraction, both of which are major deviations from atomlike behavior.
Collapse
Affiliation(s)
- Alistair J Brash
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| | - Jake Iles-Smith
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
- Department of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Catherine L Phillips
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| | - Dara P S McCutcheon
- Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Bristol BS8 1FD, United Kingdom
| | - John O'Hara
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| | - Edmund Clarke
- EPSRC National Epitaxy Facility, Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield S1 4DE, United Kingdom
| | - Benjamin Royall
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| | - Luke R Wilson
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| | - Jesper Mørk
- Department of Photonics Engineering, DTU Fotonik, Technical University of Denmark, Building 343, 2800 Kongens Lyngby, Denmark
| | - Maurice S Skolnick
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| | - A Mark Fox
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
| | - Ahsan Nazir
- Department of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|