1
|
Bhowmik BP, Ness C. Absorbing-state transitions in particulate systems under spatially varying driving. SOFT MATTER 2025. [PMID: 40183707 DOI: 10.1039/d4sm01497a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Non-equilibrium transitions into absorbing states are widespread, and amorphous materials under cyclic shear have emerged as useful model systems in which to study their properties. Recent work has focused on homogeneous driving in which the shear amplitude is uniform in space, despite most real world flows involving spatially inhomogeneous conditions that are known to produce qualitatively distinct phenomenology. Here we study the absorbing state transition under inhomogeneous driving using a modified random organization model. For smoothly varying driving the steady state results map onto the homogeneous absorbing state phase diagram, with the position of the boundary between absorbing and diffusive states being insensitive to the driving wavelength. The phenomenology is well-described by a one-dimensional generalized continuum model that we pose. For discontinuously varying driving the position of the absorbing phase boundary and the exponent characterising the fraction of active particles are altered relative to the homogeneous case.
Collapse
Affiliation(s)
| | - Christopher Ness
- School of Engineering, University of Edinburgh, Edinburgh EH9 3JL, UK.
| |
Collapse
|
2
|
Ramesh G, Santra M, Singh RS. Effects of quenched disorder on the kinetics and pathways of phase transition in a soft colloidal system. J Chem Phys 2025; 162:014707. [PMID: 39749906 DOI: 10.1063/5.0240099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Although impurities are unavoidable in real-world and experimental systems, most numerical studies on nucleation focus on pure (impurity-free) systems. As a result, the role of impurities in phase transitions remains poorly understood, especially for systems with complex free energy landscapes featuring one or more intermediate metastable phases. In this study, we employed Monte Carlo simulations to investigate the effects of static impurities (quenched disorder) of varying length scales and surface morphologies on the crystal nucleation mechanism and kinetics in the Gaussian core model system-a representative model for soft colloidal systems. We first explored how the nucleation free energy barrier and critical cluster size are influenced by the fraction of randomly pinned (or, static) particles (fp) and the size (np) of the pinned region or cluster. Both the nucleation free energy barrier and critical cluster size increase sharply with increasing fp but decrease as np grows for a given fraction of pinned particles, eventually approaching the homogeneous nucleation limit. On examining the impact of impurity's surface morphology on nucleation kinetics, we observed that the nucleation barrier significantly decreases with increasing the impurity (or, seed) size with crystalline surface morphologies with body-centered cubic showing the greatest facilitation. Interestingly, seeds with random surface roughness had little effect on nucleation kinetics. In addition, the polymorphic identity of particles in the final crystalline phase is influenced by both the seed's surface morphology and system size. This study further provides crucial insights into the intricate relationship between surface-induced local structural fluctuations and the selection of the polymorphic identity in the final crystalline phase, which is essential for understanding and controlling crystallization processes in experiments.
Collapse
Affiliation(s)
- Gadha Ramesh
- Department of Physics, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517619, India
| | - Mantu Santra
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Goa 403401, India
| | - Rakesh S Singh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh 517619, India
| |
Collapse
|
3
|
Dattani UA, Karmakar S, Chaudhuri P. Athermal quasistatic cavitation in amorphous solids: Effect of random pinning. J Chem Phys 2023; 159:204501. [PMID: 38010327 DOI: 10.1063/5.0171905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/19/2023] [Indexed: 11/29/2023] Open
Abstract
Amorphous solids are known to fail catastrophically via fracture, and cavitation at nano-metric scales is known to play a significant role in such a failure process. Micro-alloying via inclusions is often used as a means to increase the fracture toughness of amorphous solids. Modeling such inclusions as randomly pinned particles that only move affinely and do not participate in plastic relaxations, we study how the pinning influences the process of cavitation-driven fracture in an amorphous solid. Using extensive numerical simulations and probing in the athermal quasistatic limit, we show that just by pinning a very small fraction of particles, the tensile strength is increased, and also the cavitation is delayed. Furthermore, the cavitation that is expected to be spatially heterogeneous becomes spatially homogeneous by forming a large number of small cavities instead of a dominant cavity. The observed behavior is rationalized in terms of screening of plastic activity via the pinning centers, characterized by a screening length extracted from the plastic-eigenmodes.
Collapse
Affiliation(s)
- Umang A Dattani
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Smarajit Karmakar
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Pinaki Chaudhuri
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
4
|
Ozawa M, Iwashita Y, Kob W, Zamponi F. Creating bulk ultrastable glasses by random particle bonding. Nat Commun 2023; 14:113. [PMID: 36611023 PMCID: PMC9825381 DOI: 10.1038/s41467-023-35812-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
A recent breakthrough in glass science has been the synthesis of ultrastable glasses via physical vapor deposition techniques. These samples display enhanced thermodynamic, kinetic and mechanical stability, with important implications for fundamental science and technological applications. However, the vapor deposition technique is limited to atomic, polymer and organic glass-formers and is only able to produce thin film samples. Here, we propose a novel approach to generate ultrastable glassy configurations in the bulk, via random particle bonding, and using computer simulations we show that this method does indeed allow for the production of ultrastable glasses. Our technique is in principle applicable to any molecular or soft matter system, such as colloidal particles with tunable bonding interactions, thus opening the way to the design of a large class of ultrastable glasses.
Collapse
Affiliation(s)
- Misaki Ozawa
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | | | - Walter Kob
- Laboratoire Charles Coulomb, University of Montpellier and CNRS, F-34095, Montpellier, France
| | - Francesco Zamponi
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
5
|
Shiraishi K, Hara Y, Mizuno H. Low-frequency vibrational states in ideal glasses with random pinning. Phys Rev E 2022; 106:054611. [PMID: 36559418 DOI: 10.1103/physreve.106.054611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Glasses exhibit spatially localized vibrations in the low-frequency regime. These localized modes emerge below the boson peak frequency ω_{BP}, and their vibrational densities of state follow g(ω)∝ω^{4} (ω is frequency). Here, we attempt to address how the localized vibrations behave through the ideal glass transition. To do this, we employ a random pinning method, which enables us to study the thermodynamic glass transition. We find that the localized vibrations survive even in equilibrium glass states. Remarkably, the localized vibrations still maintain the properties of appearance below ω_{BP} and g(ω)∝ω^{4}. Our results provide important insight into the material properties of ideal glasses.
Collapse
Affiliation(s)
- Kumpei Shiraishi
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Yusuke Hara
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Hideyuki Mizuno
- Graduate School of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| |
Collapse
|
6
|
Dattani UA, Karmakar S, Chaudhuri P. Universal mechanical instabilities in the energy landscape of amorphous solids: Evidence from athermal quasistatic expansion. Phys Rev E 2022; 106:055004. [PMID: 36559417 DOI: 10.1103/physreve.106.055004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 11/02/2022] [Indexed: 11/30/2022]
Abstract
Using numerical simulations, we study the failure of an amorphous solid under athermal quasistatic expansion starting from a homogeneous high-density state. During the expansion process, plastic instabilities occur, manifested via sudden jumps in pressure and energy, with the largest event happening via cavitation leading to the material's yielding. We demonstrate that all these plastic events are characterized by saddle-node bifurcation, during which the smallest nonzero eigenvalue of the Hessian matrix vanishes via a square-root singularity. We find that after yielding and prior to complete fracture, the statistics of pressure or energy jumps corresponding to the plastic events show subextensive system-size scaling, similar to the case of simple shear but with different exponents. Thus, overall, our paper reveals universal features in the fundamental characteristics during mechanical failure in amorphous solids under any quasistatic deformation protocol.
Collapse
Affiliation(s)
- Umang A Dattani
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Smarajit Karmakar
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal,Ranga Reddy District, Hyderabad, 500107 Telangana, India
| | - Pinaki Chaudhuri
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
7
|
Das D, Acharya P, Ramola K. Long-range correlations in pinned athermal networks. Phys Rev E 2021; 104:014503. [PMID: 34412209 DOI: 10.1103/physreve.104.014503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
We derive exact results for displacement fields that develop as a response to external pinning forces in two-dimensional athermal networks. For a triangular lattice arrangement of particles interacting through soft potentials, we develop a Green's function formalism which we use to derive exact results for displacement fields produced by localized external forces. We show that in the continuum limit the displacement fields decay as 1/r at large distances r away from a force dipole. Finally, we extend our formulation to study correlations in the displacement fields produced by the external pinning forces. We show that uncorrelated pinned forces at each vertex give rise to long-range correlations in displacements in athermal systems, with a nontrivial system size dependence. We verify our predictions with numerical simulations of athermal networks in two dimensions.
Collapse
Affiliation(s)
- Debankur Das
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500107, India
| | - Pappu Acharya
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500107, India
| | - Kabir Ramola
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500107, India
| |
Collapse
|
8
|
Bhowmik BP, Karmakar S, Procaccia I, Rainone C. Particle pinning suppresses spinodal criticality in the shear-banding instability. Phys Rev E 2019; 100:052110. [PMID: 31869977 DOI: 10.1103/physreve.100.052110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Indexed: 11/07/2022]
Abstract
Strained amorphous solids often fail mechanically by creating a shear band. It had been understood that the shear-banding instability is usefully described as crossing a spinodal point (with disorder) in an appropriate thermodynamic description. It remained contested, however, whether the spinodal is critical (with divergent correlation length) or not. Here we offer evidence for critical spinodal by using particle pinning. For a finite concentration of pinned particles the correlation length is bounded by the average distance between pinned particles, but without pinning it is bounded by the system size.
Collapse
Affiliation(s)
- Bhanu Prasad Bhowmik
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500107 Telangana, India
| | - Smarajit Karmakar
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500107 Telangana, India
| | - Itamar Procaccia
- Department of Chemical and Biological Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Corrado Rainone
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|