1
|
Krutyanskiy V, Canteri M, Meraner M, Bate J, Krcmarsky V, Schupp J, Sangouard N, Lanyon BP. Telecom-Wavelength Quantum Repeater Node Based on a Trapped-Ion Processor. PHYSICAL REVIEW LETTERS 2023; 130:213601. [PMID: 37295084 DOI: 10.1103/physrevlett.130.213601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/17/2023] [Accepted: 03/16/2023] [Indexed: 06/12/2023]
Abstract
A quantum repeater node is presented based on trapped ions that act as single-photon emitters, quantum memories, and an elementary quantum processor. The node's ability to establish entanglement across two 25-km-long optical fibers independently, then to swap that entanglement efficiently to extend it over both fibers, is demonstrated. The resultant entanglement is established between telecom-wavelength photons at either end of the 50 km channel. Finally, the system improvements to allow for repeater-node chains to establish stored entanglement over 800 km at hertz rates are calculated, revealing a near-term path to distributed networks of entangled sensors, atomic clocks, and quantum processors.
Collapse
Affiliation(s)
- V Krutyanskiy
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
- Institut für Quantenoptik und Quanteninformation, Osterreichische Akademie der Wissenschaften, Technikerstrasse 21a, 6020 Innsbruck, Austria
| | - M Canteri
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
- Institut für Quantenoptik und Quanteninformation, Osterreichische Akademie der Wissenschaften, Technikerstrasse 21a, 6020 Innsbruck, Austria
| | - M Meraner
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
- Institut für Quantenoptik und Quanteninformation, Osterreichische Akademie der Wissenschaften, Technikerstrasse 21a, 6020 Innsbruck, Austria
| | - J Bate
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
| | - V Krcmarsky
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
- Institut für Quantenoptik und Quanteninformation, Osterreichische Akademie der Wissenschaften, Technikerstrasse 21a, 6020 Innsbruck, Austria
| | - J Schupp
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
- Institut für Quantenoptik und Quanteninformation, Osterreichische Akademie der Wissenschaften, Technikerstrasse 21a, 6020 Innsbruck, Austria
| | - N Sangouard
- Institut de Physique Théorique, Université Paris-Saclay, CEA, CNRS, 91191 Gif-sur-Yvette, France
| | - B P Lanyon
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria
- Institut für Quantenoptik und Quanteninformation, Osterreichische Akademie der Wissenschaften, Technikerstrasse 21a, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Krutyanskiy V, Galli M, Krcmarsky V, Baier S, Fioretto DA, Pu Y, Mazloom A, Sekatski P, Canteri M, Teller M, Schupp J, Bate J, Meraner M, Sangouard N, Lanyon BP, Northup TE. Entanglement of Trapped-Ion Qubits Separated by 230 Meters. PHYSICAL REVIEW LETTERS 2023; 130:050803. [PMID: 36800448 DOI: 10.1103/physrevlett.130.050803] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
We report on an elementary quantum network of two atomic ions separated by 230 m. The ions are trapped in different buildings and connected with 520(2) m of optical fiber. At each network node, the electronic state of an ion is entangled with the polarization state of a single cavity photon; subsequent to interference of the photons at a beam splitter, photon detection heralds entanglement between the two ions. Fidelities of up to (88.0+2.2-4.7)% are achieved with respect to a maximally entangled Bell state, with a success probability of 4×10^{-5}. We analyze the routes to improve these metrics, paving the way for long-distance networks of entangled quantum processors.
Collapse
Affiliation(s)
- V Krutyanskiy
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Technikerstraße 21a, 6020 Innsbruck, Austria
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - M Galli
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - V Krcmarsky
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Technikerstraße 21a, 6020 Innsbruck, Austria
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - S Baier
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - D A Fioretto
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Y Pu
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - A Mazloom
- Department of Physics, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, USA
| | - P Sekatski
- Department of Applied Physics, University of Geneva, 1211 Geneva, Switzerland
| | - M Canteri
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Technikerstraße 21a, 6020 Innsbruck, Austria
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - M Teller
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - J Schupp
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Technikerstraße 21a, 6020 Innsbruck, Austria
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - J Bate
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - M Meraner
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Technikerstraße 21a, 6020 Innsbruck, Austria
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - N Sangouard
- Institut de Physique Théorique, Université Paris-Saclay, CEA, CNRS, 91191 Gif-sur-Yvette, France
| | - B P Lanyon
- Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Technikerstraße 21a, 6020 Innsbruck, Austria
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - T E Northup
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
3
|
Zheng J, Xue X, Ji C, Yuan Y, Sun K, Rosenmann D, Wang L, Wu J, Campbell JC, Guha S. Dynamic-quenching of a single-photon avalanche photodetector using an adaptive resistive switch. Nat Commun 2022; 13:1517. [PMID: 35314686 PMCID: PMC8938474 DOI: 10.1038/s41467-022-29195-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 02/22/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractOne of the most common approaches for quenching single-photon avalanche diodes is to use a passive resistor in series with it. A drawback of this approach has been the limited recovery speed of the single-photon avalanche diodes. High resistance is needed to quench the avalanche, leading to slower recharging of the single-photon avalanche diodes depletion capacitor. We address this issue by replacing a fixed quenching resistor with a bias-dependent adaptive resistive switch. Reversible generation of metallic conduction enables switching between low and high resistance states under unipolar bias. As an example, using a Pt/Al2O3/Ag resistor with a commercial silicon single-photon avalanche diodes, we demonstrate avalanche pulse widths as small as ~30 ns, 10× smaller than a passively quenched approach, thus significantly improving the single-photon avalanche diodes frequency response. The experimental results are consistent with a model where the adaptive resistor dynamically changes its resistance during discharging and recharging the single-photon avalanche diodes.
Collapse
|
4
|
Li Y, Wen Y, Wang S, Liu C, Liu H, Wang M, Sun C, Gao Y, Li S, Wang H. Generation of entanglement between a highly wave-packet-tunable photon and a spin-wave memory in cold atoms. OPTICS EXPRESS 2022; 30:2792-2802. [PMID: 35209412 DOI: 10.1364/oe.446837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Controls of waveforms (pulse durations) of single photons are important tasks for effectively interconnecting disparate atomic memories in hybrid quantum networks. So far, the waveform control of a single photon that is entangled with an atomic memory remains unexplored. Here, we demonstrated control of waveform length of the photon that is entangled with an atomic spin-wave memory by varying light-atom interaction time in cold atoms. The Bell parameter S as a function of the duration of photon pulse is measured, which shows that violations of Bell inequality can be achieved for the photon pulse in the duration range from 40 ns to 50 µs, where, S = 2.64 ± 0.02 and S = 2.26 ± 0.05 for the 40-ns and 50-µs durations, respectively. The measured results show that S parameter decreases with the increase in the pulse duration. We confirm that the increase in photon noise probability per pulse with the pulse-duration is responsible for the S decrease.
Collapse
|