1
|
Marini Bettolo Marconi U, Caprini L. Spontaneous generation of angular momentum in chiral active crystals. SOFT MATTER 2025; 21:2586-2606. [PMID: 40071394 DOI: 10.1039/d4sm01426j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
We study a two-dimensional chiral active crystal composed of underdamped chiral active particles. These particles, characterized by intrinsic handedness and persistence, interact via linear forces derived from harmonic potentials. Chirality plays a pivotal role in shaping the system's behavior: it reduces displacement and velocity fluctuations while inducing cross-spatial correlations among different Cartesian components of velocity. These features distinguish chiral crystals from their non-chiral counterparts, leading to the emergence of net angular momentum, as predicted analytically. This angular momentum, driven by the torque generated by the chiral active force, exhibits a non-monotonic dependence on the degree of chirality. Additionally, it contributes to the entropy production rate, as revealed through a path-integral analysis. We investigate the dynamic properties of the crystal in both Fourier and real space. Chirality induces a non-dispersive peak in the displacement spectrum, which underlies the generation of angular momentum and oscillations in time-dependent autocorrelation functions or mean-square displacement, all of which are analytically predicted.
Collapse
Affiliation(s)
| | - Lorenzo Caprini
- Sapienza University of Rome, Piazzale Aldo Moro 2, Rome, Italy.
| |
Collapse
|
2
|
Maire R, Plati A, Smallenburg F, Foffi G. Non-equilibrium coexistence between a fluid and a hotter or colder crystal of granular hard disks. J Chem Phys 2025; 162:124901. [PMID: 40125686 DOI: 10.1063/5.0250643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/24/2025] [Indexed: 03/25/2025] Open
Abstract
Non-equilibrium phase coexistence is commonly observed in both biological and artificial systems, yet understanding it remains a significant challenge. Unlike equilibrium systems, where free energy provides a unifying framework, the absence of such a quantity in non-equilibrium settings complicates their theoretical understanding. Granular materials, driven out of equilibrium by energy dissipation during collisions, serve as an ideal platform to investigate these systems, offering insights into the parallels and distinctions between equilibrium and non-equilibrium phase behavior. For example, the coexisting dense phase is typically colder than the dilute phase, a result usually attributed to greater dissipation in denser regions. In this article, we demonstrate that this is not always the case. Using a simple numerical granular model, we show that a hot solid and a cold liquid can coexist in granular systems. This counterintuitive phenomenon arises because the collision frequency can be lower in the solid phase than in the liquid phase, consistent with equilibrium results for hard-disk systems. We further demonstrate that kinetic theory can be extended to accurately predict phase temperatures even at very high packing fractions, including within the solid phase. Our results highlight the importance of collisional dynamics and energy exchange in determining phase behavior in granular materials, offering new insights into non-equilibrium phase coexistence and the complex physics underlying granular systems.
Collapse
Affiliation(s)
- R Maire
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - A Plati
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - F Smallenburg
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - G Foffi
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| |
Collapse
|
3
|
Liu Z, Dijkstra M. Collective dynamics of intelligent active Brownian particles with visual perception and velocity alignment in 3D: spheres, rods, and worms. SOFT MATTER 2025; 21:1529-1544. [PMID: 39887176 DOI: 10.1039/d4sm01270d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Many living systems, such as birds and fish, exhibit collective behaviors like flocking and swarming. Recently, an experimental system of active colloidal particles has been developed, where the motility of each particle is adjusted based on its visual detection of surrounding particles. These particles with visual-perception-dependent motility exhibit group formation and cohesion. Inspired by these behaviors, we investigate intelligent active Brownian particles (iABPs) equipped with visual perception and velocity alignment in three dimensions using computer simulations. The visual-perception-based self-steering describes the tendency of iABPs to move toward the center of mass of particles within their visual cones, while velocity alignment encourages alignment with neighboring particles. We examine how the behavior varies with the visual cone angle θ, self-propulsion speed (Péclet number Pe), and the interaction strengths of velocity alignment (Ωa) and visual-based self-steering (Ωv). Our findings show that spherical iABPs form dense clusters, worm-like clusters, milling behaviors, and dilute-gas phases, consistent with 2D studies. By reducing the simulation box size, we observe additional structures like band-like clusters and dense baitball formations. Additionally, rod-like iABPs form band-like, worm-like, radiating, and helical structures, while iABP worms exhibit band-like, streamlined, micellar-like and entangled structures. Many of these patterns resemble collective behaviors in nature, such as ant milling, fish baitballs, and worm clusters. Advances in synthetic techniques could enable nanorobots with similar capabilities, offering insights into multicellular systems through active matter.
Collapse
Affiliation(s)
- Zhaoxuan Liu
- Soft Condensed Matter & Biophysics Group, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands.
| | - Marjolein Dijkstra
- Soft Condensed Matter & Biophysics Group, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands.
| |
Collapse
|
4
|
Gutierrez-Martinez LL, Sandoval M. Time-dependent propulsion of fully inertial active stochastic particles: theory and simulations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:135102. [PMID: 39883959 DOI: 10.1088/1361-648x/adb089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 01/30/2025] [Indexed: 02/01/2025]
Abstract
Up to now, studies on fully inertial (adding mass and moment of inertia) active Brownian particles (IABPs) have only considered a constant propulsion force. This work overcomes this by studying IABPs but with a time-dependent propulsion and analytically characterizes this system by finding its mean-square displacement and effective diffusion for any periodic time-dependent propulsion speed. To exemplify the periodic general expressions, three particular self-propulsion signals are addressed, expressly, a cosine, a square-wave, and a zig-zag propulsion force. Langevin dynamics simulations are also employed to validate the analytical findings.
Collapse
Affiliation(s)
- Luis L Gutierrez-Martinez
- Department of Physics, Complex Systems Universidad Autonoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Mario Sandoval
- Department of Physics, Complex Systems Universidad Autonoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| |
Collapse
|
5
|
Tang Q, Tang C, Huang Y, Müller M, Ma YQ. Suppression of bubbles in unstable active liquids via fast evaporation. Phys Rev E 2024; 110:054602. [PMID: 39690674 DOI: 10.1103/physreve.110.054602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/15/2024] [Indexed: 12/19/2024]
Abstract
A common intuition in thermodynamics is that bubbles can spontaneously grow in unstable liquids, which will be detrimental to a variety of physical and chemical processes, such as evaporation-induced self-assembly and electrocatalysis. Here, we show that this common intuition can be significantly reversed by demonstrating a suppression of bubbles in unstable active liquids induced by fast evaporation, which is in contrast to the bubble growth in passive liquids. Such anomalous bubble suppression can be attributed to an activity-induced inversion of pressure difference between bubbles and their surrounding liquid. Moreover, this pressure flip depends on the activity as well as the thermodynamics of passive liquids, and it can generate different kinetic pathways that allow controlling the bubble dynamics in unstable liquids. Our results establish a foundation for promoting applications of unstable active liquids in various physical and chemical processes.
Collapse
Affiliation(s)
| | | | | | | | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Jiangsu Physical Science Research Center, Nanjing 210093, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
6
|
Dutta D, Kundu A, Sabhapandit S, Basu U. Harmonically trapped inertial run-and-tumble particle in one dimension. Phys Rev E 2024; 110:044107. [PMID: 39562964 DOI: 10.1103/physreve.110.044107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/05/2024] [Indexed: 11/21/2024]
Abstract
We study the nonequilibrium stationary state of a one-dimensional inertial run-and-tumble particle (IRTP) trapped in a harmonic potential. We find that the presence of inertia leads to two distinct dynamical scenarios, namely, overdamped and underdamped, characterized by the relative strength of the viscous and the trap timescales. We also find that inertial nature of the active dynamics leads to the particle being confined in specific regions of the phase plane in the overdamped and underdamped cases, which we compute analytically. Moreover, the interplay of the inertial and active timescales gives rise to several subregimes, which are characterized by very different behavior of position and velocity fluctuations of the IRTP. In particular, in the underdamped regime, both the position and velocity undergo transitions from a novel multipeaked structure in the strongly active limit to a single-peaked Gaussian-like distribution in the passive limit. On the other hand, in the overdamped scenario, the position distribution shows a transition from a U shape to a dome shape, as activity is decreased. Interestingly, the velocity distribution in the overdamped scenario shows two transitions-from a single-peaked shape with an algebraic divergence at the origin in the strongly active regime to a double-peaked one in the moderately active regime to a dome-shaped one in the passive regime.
Collapse
|
7
|
Kryuchkov NP, Nasyrov AD, Denisenko IR, Yurchenko SO. Interpolating the radial distribution function in a two-dimensional fluid across a wide temperature range. J Chem Phys 2024; 161:094505. [PMID: 39234969 DOI: 10.1063/5.0213689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024] Open
Abstract
Calculations of pair correlations in fluids usually require resource-intensive simulations or integral equations, while existing simple approximations lack accuracy. Here, we show that the pair correlation function for monolayer fluid-like systems can be decomposed into correlation peaks defined using Voronoi cells. Being properly normalized, these peaks exhibit a universal form, weak temperature dependence, and resemble those of an ideal gas, except for the first peak. As a result, we propose a simple and accurate approach to interpolate the pair correlation functions, suitable for molecular, colloids, and cellular fluids.
Collapse
Affiliation(s)
- Nikita P Kryuchkov
- Bauman Moscow State Technical University, 2nd Baumanskaya street 5, 105005 Moscow, Russia
| | - Artur D Nasyrov
- Bauman Moscow State Technical University, 2nd Baumanskaya street 5, 105005 Moscow, Russia
| | - Ilya R Denisenko
- Bauman Moscow State Technical University, 2nd Baumanskaya street 5, 105005 Moscow, Russia
| | - Stanislav O Yurchenko
- Bauman Moscow State Technical University, 2nd Baumanskaya street 5, 105005 Moscow, Russia
| |
Collapse
|
8
|
Janzen G, Matoz-Fernandez DA. Density and inertia effects on two-dimensional active semiflexible filament suspensions. SOFT MATTER 2024; 20:6618-6626. [PMID: 39108173 DOI: 10.1039/d4sm00572d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
We examine the influence of density on the transition between chain and spiral structures in planar assemblies of active semiflexible filaments, utilizing detailed numerical simulations. We focus on how increased density, and higher Péclet numbers, affect the activity-induced transition spiral state in a semiflexible, self-avoiding active chain. Our findings show that increasing the density causes the spiral state to break up, reverting to a motile chain-like shape. This results in a density-dependent reentrant phase transition from spirals back to open chains. We attribute this phenomenon to an inertial effect observed at the single polymer level, where increased persistence length due to inertia has been shown in recent three-dimensional studies to cause polymers to open up. Our two-dimensional simulations further reveal that a reduction in the damping coefficient leads to partial unwinding of the spirals, forming longer arms. In suspension, interactions among these extended arms can trigger a complete unwinding of the spirals, driven by the combined effects of density and inertia.
Collapse
Affiliation(s)
- Giulia Janzen
- Department of Theoretical Physics, Complutense University of Madrid, 28040 Madrid, Spain.
| | - D A Matoz-Fernandez
- Department of Theoretical Physics, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
9
|
Xu TL, Qin CR, Tang B, Gao JC, Zhou J, Chen K, Zhang TH, Tian WD. Constrained motion of self-propelling eccentric disks linked by a spring. J Chem Phys 2024; 161:064905. [PMID: 39140446 DOI: 10.1063/5.0217158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024] Open
Abstract
It has been supposed that the interplay of elasticity and activity plays a key role in triggering the non-equilibrium behaviors in biological systems. However, the experimental model system is missing to investigate the spatiotemporally dynamical phenomena. Here, a model system of an active chain, where active eccentric-disks are linked by a spring, is designed to study the interplay of activity, elasticity, and friction. Individual active chain exhibits longitudinal and transverse motions; however, it starts to self-rotate when pinning one end and self-beat when clamping one end. In addition, our eccentric-disk model can qualitatively reproduce such behaviors and explain the unusual self-rotation of the first disk around its geometric center. Furthermore, the structure and dynamics of long chains were studied via simulations without steric interactions. It was found that a hairpin conformation emerges in free motion, while in the constrained motions, the rotational and beating frequencies scale with the flexure number (the ratio of self-propelling force to bending rigidity), χ, as ∼(χ)4/3. Scaling analysis suggests that it results from the balance between activity and energy dissipation. Our findings show that topological constraints play a vital role in non-equilibrium synergy behaviors.
Collapse
Affiliation(s)
- Tian-Liang Xu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | - Chao-Ran Qin
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | - Bin Tang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | - Jin-Cheng Gao
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | - Jiankang Zhou
- School of Optoelectronic Science and Engineering, Soochow University, Suzhou 215006, China
| | - Kang Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | - Tian Hui Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | - Wen-de Tian
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| |
Collapse
|
10
|
Karan C, Chaudhuri A, Chaudhuri D. Inertia and activity: spiral transitions in semi-flexible, self-avoiding polymers. SOFT MATTER 2024; 20:6221-6230. [PMID: 39049672 DOI: 10.1039/d4sm00511b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
We consider a two-dimensional, tangentially active, semi-flexible, self-avoiding polymer to find a dynamical re-entrant transition between motile open chains and spinning achiral spirals with increasing activity. Utilizing probability distributions of the turning number, we ascertain the comparative stability of the spiral structure and present a detailed phase diagram within the activity inertia plane. The onset of spiral formation at low activity levels is governed by a torque balance and is independent of inertia. At higher activities, however, inertial effects lead to spiral destabilization, an effect absent in the overdamped limit. We further delineate alterations in size and shape by analyzing the end-to-end distance distribution and the radius of gyration tensor. The Kullback-Leibler divergence from equilibrium distributions exhibits a non-monotonic relationship with activity, reaching a peak at the most compact spirals characterized by the most persistent spinning. As inertia increases, this divergence from equilibrium diminishes.
Collapse
Affiliation(s)
- Chitrak Karan
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Abhishek Chaudhuri
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli, PO 140306, India.
| | - Debasish Chaudhuri
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
11
|
Caporusso CB, Cugliandolo LF, Digregorio P, Gonnella G, Suma A. Phase separation kinetics and cluster dynamics in two-dimensional active dumbbell systems. SOFT MATTER 2024; 20:4208-4225. [PMID: 38741521 DOI: 10.1039/d4sm00200h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Molecular dynamics simulations were employed to investigate the phase separation process of a two-dimensional active Brownian dumbbell model. We evaluated the time dependence of the typical size of the dense component using the scaling properties of the structure factor, along with the averaged number of clusters and their radii of gyration. The growth observed is faster than in active disk models, and this effect is further enhanced under stronger activity. Next, we focused on studying the hexatic order of the clusters. The length associated with the orientational order increases algebraically with time and faster than for spherical active Brownian particles. Under weak active forces, most clusters exhibit a uniform internal orientational order. However, under strong forces, large clusters consist of domains with different orientational orders. We demonstrated that the latter configurations are not stable, and given sufficient time to evolve, they eventually achieve homogeneous configurations as well. No gas bubbles are formed within the clusters, even when there are patches of different hexatic order. Finally, attention was directed towards the geometry and motion of the clusters themselves. By employing a tracking algorithm, we showed that clusters smaller than the typical size at the observation time exhibit regular shapes, while larger ones display fractal characteristics. In between collisions or break-ups, the clusters behave as solid bodies. Their centers of mass undergo circular motion, with radii increasing with the cluster size. The angular velocity of the center of mass equals that of the constituents with respect to their center of mass. These observations were rationalised with a simple mechanical model.
Collapse
Affiliation(s)
- C B Caporusso
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari, via Amendola 173, Bari, I-70126, Italy
- INFN, Sezione di Bari, via Amendola 173, Bari, I-70126, Italy
| | - L F Cugliandolo
- CNRS, Laboratoire de Physique Théorique et Hautes Energies, LPTHE, Sorbonne Université, F-75005 Paris, France
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France
| | - P Digregorio
- Departement de Fisica de la Materia Condensada, Facultat de Fisica, Universitat de Barcelona, Martí i Franquès 1, E08028 Barcelona, Spain.
- UBICS University of Barcelona Institute of Complex Systems, Martí i Franquès 1, E08028 Barcelona, Spain
| | - G Gonnella
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari, via Amendola 173, Bari, I-70126, Italy
- INFN, Sezione di Bari, via Amendola 173, Bari, I-70126, Italy
| | - A Suma
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari, via Amendola 173, Bari, I-70126, Italy
- INFN, Sezione di Bari, via Amendola 173, Bari, I-70126, Italy
| |
Collapse
|
12
|
Semeraro M, Suma A, Negro G. Fluctuation Theorems for Heat Exchanges between Passive and Active Baths. ENTROPY (BASEL, SWITZERLAND) 2024; 26:439. [PMID: 38920448 PMCID: PMC11203073 DOI: 10.3390/e26060439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/27/2024]
Abstract
In addition to providing general constraints on probability distributions, fluctuation theorems allow us to infer essential information on the role played by temperature in heat exchange phenomena. In this numerical study, we measure the temperature of an out-of-equilibrium active bath using a fluctuation theorem that relates the fluctuations in the heat exchanged between two baths to their temperatures. Our setup consists of a single particle moving between two wells of a quartic potential accommodating two different baths. The heat exchanged between the two baths is monitored according to two definitions: as the kinetic energy carried by the particle whenever it jumps from one well to the other and as the work performed by the particle on one of the two baths when immersed in it. First, we consider two equilibrium baths at two different temperatures and verify that a fluctuation theorem featuring the baths temperatures holds for both heat definitions. Then, we introduce an additional Gaussian coloured noise in one of the baths, so as to make it effectively an active (out-of-equilibrium) bath. We find that a fluctuation theorem is still satisfied with both heat definitions. Interestingly, in this case the temperature obtained through the fluctuation theorem for the active bath corresponds to the kinetic temperature when considering the first heat definition, while it is larger with the second one. We interpret these results by looking at the particle jump phenomenology.
Collapse
Affiliation(s)
- Massimiliano Semeraro
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, Via Amendola 173, 70126 Bari, Italy; (A.S.); (G.N.)
| | | | | |
Collapse
|
13
|
Adersh F, Muhsin M, Sahoo M. Inertial active harmonic particle with memory induced spreading by viscoelastic suspension. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:33. [PMID: 38753070 DOI: 10.1140/epje/s10189-024-00424-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/15/2024] [Indexed: 06/11/2024]
Abstract
We investigate the self-propulsion of an inertial active particle confined in a two-dimensional harmonic trap. The particle is suspended in a non-Newtonian or viscoelastic suspension with a friction kernel that decays exponentially with a time constant characterizing the memory timescale or transient elasticity of the medium. By solving the associated non-Markovian dynamics, we identify two regimes in parameter space distinguishing the oscillatory and non-oscillatory behavior of the particle motion. By simulating the particle trajectories and exactly calculating the steady-state probability distribution functions and mean square displacement; interestingly, we observe that with an increase in the memory time scale, the effective temperature of the environment increases. As a consequence, the particle becomes energetic and spread away from the center, covering larger space inside the confinement. On the other hand, with an increase in the duration of the activity, the particle becomes trapped by the harmonic confinement.
Collapse
Affiliation(s)
- F Adersh
- Department of Physics, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, India
| | - M Muhsin
- Department of Physics, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, India
| | - M Sahoo
- Department of Physics, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, India.
| |
Collapse
|
14
|
Hecht L, Dong I, Liebchen B. Motility-induced coexistence of a hot liquid and a cold gas. Nat Commun 2024; 15:3206. [PMID: 38615122 PMCID: PMC11016108 DOI: 10.1038/s41467-024-47533-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/03/2024] [Indexed: 04/15/2024] Open
Abstract
If two phases exist at the same time, such as a gas and a liquid, they have the same temperature. This fundamental law of equilibrium physics is known to apply even to many non-equilibrium systems. However, recently, there has been much attention in the finding that inertial self-propelled particles like Janus colloids in a plasma or microflyers could self-organize into a hot gas-like phase that coexists with a colder liquid-like phase. Here, we show that a kinetic temperature difference across coexisting phases can occur even in equilibrium systems when adding generic (overdamped) self-propelled particles. In particular, we consider mixtures of overdamped active and inertial passive Brownian particles and show that when they phase separate into a dense and a dilute phase, both phases have different kinetic temperatures. Surprisingly, we find that the dense phase (liquid) cannot only be colder but also hotter than the dilute phase (gas). This effect hinges on correlated motions where active particles collectively push and heat up passive ones primarily within the dense phase. Our results answer the fundamental question if a non-equilibrium gas can be colder than a coexisting liquid and create a route to equip matter with self-organized domains of different kinetic temperatures.
Collapse
Affiliation(s)
- Lukas Hecht
- Institute of Condensed Matter Physics, Department of Physics, Technical University of Darmstadt, Darmstadt, Germany
| | - Iris Dong
- Institute of Condensed Matter Physics, Department of Physics, Technical University of Darmstadt, Darmstadt, Germany
| | - Benno Liebchen
- Institute of Condensed Matter Physics, Department of Physics, Technical University of Darmstadt, Darmstadt, Germany.
| |
Collapse
|
15
|
Kryuchkov NP, Nasyrov AD, Gursky KD, Yurchenko SO. Influence of anomalous agents on the dynamics of an active system. Phys Rev E 2024; 109:034601. [PMID: 38632726 DOI: 10.1103/physreve.109.034601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/25/2024] [Indexed: 04/19/2024]
Abstract
Swarming behavior in systems of self-propelled particles, whether biological or artificial, has received increased attention in recent years. Here, we show that even a small number of particles with anomalous behavior can change dramatically collective dynamics of the swarming system and can impose unusual behavior and transitions between dynamic states. Our results pave the way to practical approaches and concepts of multiagent dynamics in groups of flocking animals: birds, insects, and fish, i.e., active and living soft matter.
Collapse
Affiliation(s)
- Nikita P Kryuchkov
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | - Artur D Nasyrov
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | - Konstantin D Gursky
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | - Stanislav O Yurchenko
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| |
Collapse
|
16
|
Shea J, Jung G, Schmid F. Force renormalization for probes immersed in an active bath. SOFT MATTER 2024; 20:1767-1785. [PMID: 38305056 DOI: 10.1039/d3sm01387a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Langevin equations or generalized Langevin equations (GLEs) are popular models for describing the motion of a particle in a fluid medium in an effective manner. Here we examine particles immersed in an inherently nonequilibrium fluid, i.e., an active bath, which are subject to an external force. Specifically, we consider two types of forces that are highly relevant for microrheological studies: A harmonic, trapping force and a constant, "drag" force. We study such systems by molecular simulations and use the simulation data to extract an effective GLE description. We find that within this description, in an active bath, the external force in the GLE is not equal to the physical external force, but rather a renormalized external force, which can be significantly smaller. The effect cannot be attributed to the mere temperature renormalization, which is also observed.
Collapse
Affiliation(s)
- Jeanine Shea
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| | - Gerhard Jung
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Friederike Schmid
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany.
| |
Collapse
|
17
|
Khali SS, Peruani F, Chaudhuri D. When an active bath behaves as an equilibrium one. Phys Rev E 2024; 109:024120. [PMID: 38491633 DOI: 10.1103/physreve.109.024120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/22/2024] [Indexed: 03/18/2024]
Abstract
Active scalar baths consisting of active Brownian particles are characterized by a non-Gaussian velocity distribution, a kinetic temperature, and a diffusion coefficient that scale with the square of the active velocity v_{0}. While these results hold in overdamped active systems, inertial effects lead to normal velocity distributions, with kinetic temperature and diffusion coefficient increasing as ∼v_{0}^{α} with 1<α<2. Remarkably, the late-time diffusivity and mobility decrease with mass. Moreover, we show that the equilibrium Einstein relation is asymptotically recovered with inertia. In summary, the inertial mass restores an equilibriumlike behavior.
Collapse
Affiliation(s)
| | - Fernando Peruani
- LPTM, CY Cergy Paris Université, 2 Avenue A. Chauvin, 95302 Cergy-Pontoise Cedex, France
| | - Debasish Chaudhuri
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India
- Max-Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| |
Collapse
|
18
|
Herrera P, Sandoval M. Structure of the active Fokker-Planck equation. Phys Rev E 2024; 109:014140. [PMID: 38366424 DOI: 10.1103/physreve.109.014140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Abstract
This paper solves in one and two dimensions the steady noninteractive active Fokker-Planck (FP) equation and finds that its velocity distribution admits, under limiting cases, a dual behavior. Briefly, when the inertial relaxation time is smaller than the orientation time, the active FP equation admits a bimodal shape, whereas the inverse condition is seen to admit a Gaussian one. Once the velocity distribution functions are available, they are used to find their effect on the system's transport properties, such as its mean-square speed. In the process, a useful mathematical identity for the first kind Bessel function as a sum of bimodal exponential functions is spotted.
Collapse
Affiliation(s)
- Pedro Herrera
- Department of Physics, Complex Systems, Universidad Autonoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Mario Sandoval
- Department of Physics, Complex Systems, Universidad Autonoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| |
Collapse
|
19
|
Semeraro M, Gonnella G, Suma A, Zamparo M. Work Fluctuations for a Harmonically Confined Active Ornstein-Uhlenbeck Particle. PHYSICAL REVIEW LETTERS 2023; 131:158302. [PMID: 37897759 DOI: 10.1103/physrevlett.131.158302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/13/2023] [Indexed: 10/30/2023]
Abstract
We study the active work fluctuations of an active Ornstein-Uhlenbeck particle in the presence of a confining harmonic potential. We tackle the problem analytically both for stationary and generic uncorrelated initial states. Our results show that harmonic confinement can induce singularities in the active work rate function, with linear stretches at large positive and negative active work, at sufficiently large active and harmonic force constants. These singularities originate from big jumps in the displacement and in the active force, occurring at the initial or ending points of trajectories and marking the relevance of boundary terms in this problem.
Collapse
Affiliation(s)
- Massimiliano Semeraro
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, Bari I-70126, Italy
| | - Giuseppe Gonnella
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, Bari I-70126, Italy
| | - Antonio Suma
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, Bari I-70126, Italy
| | - Marco Zamparo
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, Bari I-70126, Italy
| |
Collapse
|
20
|
Duan Y, Agudo-Canalejo J, Golestanian R, Mahault B. Dynamical Pattern Formation without Self-Attraction in Quorum-Sensing Active Matter: The Interplay between Nonreciprocity and Motility. PHYSICAL REVIEW LETTERS 2023; 131:148301. [PMID: 37862639 DOI: 10.1103/physrevlett.131.148301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/31/2023] [Indexed: 10/22/2023]
Abstract
We study a minimal model involving two species of particles interacting via quorum-sensing rules. Combining simulations of the microscopic model and linear stability analysis of the associated coarse-grained field theory, we identify a mechanism for dynamical pattern formation that does not rely on the standard route of intraspecies effective attractive interactions. Instead, our results reveal a highly dynamical phase of chasing bands induced only by the combined effects of self-propulsion and nonreciprocity in the interspecies couplings. Turning on self-attraction, we find that the system may phase separate into a macroscopic domain of such chaotic chasing bands coexisting with a dilute gas. We show that the chaotic dynamics of bands at the interfaces of this phase-separated phase results in anomalously slow coarsening.
Collapse
Affiliation(s)
- Yu Duan
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
| | - Jaime Agudo-Canalejo
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Benoît Mahault
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
| |
Collapse
|
21
|
Sandoval M. Stiffening and dynamics of a two-dimensional active elastic solid. SOFT MATTER 2023; 19:6885-6895. [PMID: 37671426 DOI: 10.1039/d3sm00529a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
This work deals with the mechanical properties and dynamics of an active elastic solid defined as a two-dimensional network of active stochastic particles interacting by nonlinear hard springs. By proposing a discrete model, it is numerically found that when activity in the system is turned on, the active solid stiffens as a function of propulsion forces, thus deviating from equilibrium mechanics. To understand this effect a minimal stochastic model is offered, and a physical explanation based on spatial symmetry-breaking is put forward. In addition, the dynamics of the active solid in the absence of an external stress is also studied. From this, three main features are observed to emerge, namely, a collective behavior within the active solid, a time-density fluctuation, and oscillating dynamics of the internal stresses towards a steady state.
Collapse
Affiliation(s)
- Mario Sandoval
- Department of Physics, Complex Systems, Universidad Autonoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico.
| |
Collapse
|
22
|
Abstract
In this work, the free expansion of an inertial active gas in three dimensions made of spherical non-interactive active Brownian particles with both translational and rotational inertia (IABPs) is studied. After elucidating the active particles' orientational correlation in three dimensions by employing a Fokker-Planck formalism, the diffusion, mean-square speed, persistence length, reorientation time, Swim and Reynolds pressures and total pressure of this system, are obtained theoretically and corroborated by performing Langevin dynamics simulations. Afterwards, a numerical study on particles' distribution and the mechanical pressure exerted by the active gas enclosed in a cubic box and its dependence on inertia is also carried out. This experiment highlights two important observations: first, as inertia in the system grows while fixing activity, a more uniform particle distribution within the box is achieved. In other words, the classical accumulation of active particles at the walls is seen to be suppressed by inertia. Second, an active gas with translational and rotational inertiae and made of spherical particles still has a state equation which is offered here. This is supported by the fact that both the mechanical pressure definition and the bulk pressure definition as the trace of the swim and Reynolds stress tensors, coincide in the thermodynamic limit.
Collapse
Affiliation(s)
- Mario Sandoval
- Department of Physics, Complex Systems, Universidad Autonoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico.
| |
Collapse
|
23
|
Caprini L, Marini Bettolo Marconi U, Puglisi A, Löwen H. Entropons as collective excitations in active solids. J Chem Phys 2023; 159:041102. [PMID: 37486049 DOI: 10.1063/5.0156312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
The vibrational dynamics of solids is described by phonons constituting basic collective excitations in equilibrium crystals. Here, we consider a non-equilibrium active solid, formed by self-propelled particles, which bring the system into a non-equilibrium steady-state. We identify novel vibrational collective excitations of non-equilibrium (active) origin, which coexist with phonons and dominate over them when the system is far from equilibrium. These vibrational excitations are interpreted in the framework of non-equilibrium physics, in particular, stochastic thermodynamics. We call them "entropons" because they are the modes of spectral entropy production (at a given frequency and wave vector). The existence of entropons could be verified in future experiments on dense self-propelled colloidal Janus particles and granular active matter, as well as in living systems, such as dense cell monolayers.
Collapse
Affiliation(s)
- Lorenzo Caprini
- Heinrich-Heine-Universität Düsseldorf, Institut für Theoretische Physik II-Weiche Materie, D-40225 Düsseldorf, Germany
| | - Umberto Marini Bettolo Marconi
- Scuola di Scienze e Tecnologie, Università di Camerino, via Madonna delle Carceri, 62032 Camerino, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Via A. Pascoli, I-06123 Perugia, Italy
| | - Andrea Puglisi
- Istituto dei Sistemi Complessi-CNR and Università di Roma Sapienza, P.le Aldo Moro 2, 00185 Rome, Italy
- INFN, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Hartmut Löwen
- Heinrich-Heine-Universität Düsseldorf, Institut für Theoretische Physik II-Weiche Materie, D-40225 Düsseldorf, Germany
| |
Collapse
|
24
|
Sprenger AR, Caprini L, Löwen H, Wittmann R. Dynamics of active particles with translational and rotational inertia. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:305101. [PMID: 37059111 DOI: 10.1088/1361-648x/accd36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
Inertial effects affecting both the translational and rotational dynamics are inherent to a broad range of active systems at the macroscopic scale. Thus, there is a pivotal need for proper models in the framework of active matter to correctly reproduce experimental results, hopefully achieving theoretical insights. For this purpose, we propose an inertial version of the active Ornstein-Uhlenbeck particle (AOUP) model accounting for particle mass (translational inertia) as well as its moment of inertia (rotational inertia) and derive the full expression for its steady-state properties. The inertial AOUP dynamics introduced in this paper is designed to capture the basic features of the well-established inertial active Brownian particle model, i.e. the persistence time of the active motion and the long-time diffusion coefficient. For a small or moderate rotational inertia, these two models predict similar dynamics at all timescales and, in general, our inertial AOUP model consistently yields the same trend upon changing the moment of inertia for various dynamical correlation functions.
Collapse
Affiliation(s)
- Alexander R Sprenger
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - Lorenzo Caprini
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - René Wittmann
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
25
|
Caprini L, Löwen H. Flocking without Alignment Interactions in Attractive Active Brownian Particles. PHYSICAL REVIEW LETTERS 2023; 130:148202. [PMID: 37084461 DOI: 10.1103/physrevlett.130.148202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Within a simple model of attractive active Brownian particles, we predict flocking behavior and challenge the widespread idea that alignment interactions are necessary to observe this collective phenomenon. Here, we show that even nonaligning attractive interactions can lead to a flocking state. Monitoring the velocity polarization as the order parameter, we reveal the onset of a first-order transition from a disordered phase, characterized by several small clusters, to a flocking phase, where a single flocking cluster is emerging. The scenario is confirmed by studying the spatial connected correlation function of particle velocities, which reveals scale-free behavior in flocking states and exponential-like decay for nonflocking configurations. Our predictions can be tested in microscopic and macroscopic experiments showing flocking, such as animals, migrating cells, and active colloids.
Collapse
Affiliation(s)
- L Caprini
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - H Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
26
|
Kryuchkov NP, Nasyrov AD, Gursky KD, Yurchenko SO. Inertia changes evolution of motility-induced phase separation in active matter across particle activity. Phys Rev E 2023; 107:044601. [PMID: 37198785 DOI: 10.1103/physreve.107.044601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/14/2023] [Indexed: 05/19/2023]
Abstract
The effects of inertia in active matter and motility-induced phase separation (MIPS) have attracted growing interest but still remain poorly studied. We studied MIPS behavior in the Langevin dynamics across a broad range of particle activity and damping rate values with molecular dynamic simulations. Here we show that the MIPS stability region across particle activity values consists of several domains separated by discontinuous or sharp changes in susceptibility of mean kinetic energy. These domain boundaries have fingerprints in the system's kinetic energy fluctuations and characteristics of gas, liquid, and solid subphases, such as the number of particles, densities, or the power of energy release due to activity. The observed domain cascade is most stable at intermediate damping rates but loses its distinctness in the Brownian limit or vanishes along with phase separation at lower damping values.
Collapse
Affiliation(s)
- Nikita P Kryuchkov
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | - Artur D Nasyrov
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | - Konstantin D Gursky
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| | - Stanislav O Yurchenko
- Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, 105005 Moscow, Russia
| |
Collapse
|
27
|
Te Vrugt M, Frohoff-Hülsmann T, Heifetz E, Thiele U, Wittkowski R. From a microscopic inertial active matter model to the Schrödinger equation. Nat Commun 2023; 14:1302. [PMID: 36894573 PMCID: PMC9998892 DOI: 10.1038/s41467-022-35635-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 12/14/2022] [Indexed: 03/11/2023] Open
Abstract
Active field theories, such as the paradigmatic model known as 'active model B+', are simple yet very powerful tools for describing phenomena such as motility-induced phase separation. No comparable theory has been derived yet for the underdamped case. In this work, we introduce active model I+, an extension of active model B+ to particles with inertia. The governing equations of active model I+ are systematically derived from the microscopic Langevin equations. We show that, for underdamped active particles, thermodynamic and mechanical definitions of the velocity field no longer coincide and that the density-dependent swimming speed plays the role of an effective viscosity. Moreover, active model I+ contains an analog of the Schrödinger equation in Madelung form as a limiting case, allowing one to find analoga of the quantum-mechanical tunnel effect and of fuzzy dark matter in active fluids. We investigate the active tunnel effect analytically and via numerical continuation.
Collapse
Affiliation(s)
- Michael Te Vrugt
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
- Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Tobias Frohoff-Hülsmann
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Eyal Heifetz
- Porter School of the Environment and Earth Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Uwe Thiele
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
- Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
- Center for Multiscale Theory and Computation (CMTC), Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
- Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
- Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
| |
Collapse
|
28
|
Venkatareddy N, Lin ST, Maiti PK. Phase behavior of active and passive dumbbells. Phys Rev E 2023; 107:034607. [PMID: 37073042 DOI: 10.1103/physreve.107.034607] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/08/2023] [Indexed: 04/20/2023]
Abstract
We report phase separation in a mixture of "hot" and "cold" three-dimensional dumbbells which interact by Lennard-Jones potential. We also have studied the effect of asymmetry of dumbbells and the variation of ratio of "hot" and "cold" dumbbells on their phase separation. The ratio of the temperature difference between hot and cold dumbbells to the temperature of cold dumbbells is a measure of the activity χ of the system. From constant density simulations of symmetric dumbbells, we observe that the "hot" and "cold" dumbbells phase separate at higher activity ratio (χ>5.80) compared to that of a mixture of hot and cold Lennard-Jones monomers (χ>3.44). We find that, in the phase-separated system, the hot dumbbells have high effective volume and hence high entropy which is calculated by two-phase thermodynamic method. The high kinetic pressure of hot dumbbells forces the cold dumbbells to form dense clusters such that at the interface the high kinetic pressure of hot dumbbells is balanced by the virial pressure of cold dumbbells. We find that phase separation pushes the cluster of cold dumbbells to have solidlike ordering. Bond orientation order parameters reveal that the cold dumbbells form solidlike ordering consisting of predominantly face-centered cubic and hexagonal-close packing packing, but the individual dumbbells have random orientations. The simulation of the nonequilibrium system of symmetric dumbbells at different ratios of number of hot dumbbells to cold dumbbells reveals that the critical activity of phase separation decreases with increase in fraction of hot dumbbells. The simulation of equal mixture of hot and cold asymmetric dumbbells revealed that the critical activity of phase separation was independent of the asymmetry of dumbbells. We also observed that the clusters of cold asymmetric dumbbells showed both crystalline and noncrystalline order depending on the asymmetry of dumbbells.
Collapse
Affiliation(s)
- Nayana Venkatareddy
- Department of Physics, Indian Institute of Science, C. V. Raman Ave,Bengaluru 560012, India
| | - Shiang-Tai Lin
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan 10617
| | - Prabal K Maiti
- Department of Physics, Indian Institute of Science, C. V. Raman Ave,Bengaluru 560012, India
| |
Collapse
|
29
|
Karan C, Chaudhuri D. Cooperation and competition in the collective drive by motor proteins: mean active force, fluctuations, and self-load. SOFT MATTER 2023; 19:1834-1843. [PMID: 36789956 DOI: 10.1039/d2sm01183b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We consider the dynamics of a bio-filament under the collective drive of motor proteins. They are attached irreversibly to a substrate and undergo stochastic attachment-detachment with the filament to produce a directed force on it. We establish the dependence of the mean directed force and force correlations on the parameters describing the individual motor proteins using analytical theory and direct numerical simulations. The effective Langevin description for the filament motion gives mean-squared displacement, asymptotic diffusion constant, and mobility leading to an effective temperature. Finally, we show how competition between motor protein extensions generates a self-load, describable in terms of the effective temperature, affecting the filament motion.
Collapse
Affiliation(s)
- Chitrak Karan
- Institute of Physics, Sachivalaya Marg, Sainik School, Bhubaneswar, 751005, India.
- Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Debasish Chaudhuri
- Institute of Physics, Sachivalaya Marg, Sainik School, Bhubaneswar, 751005, India.
- Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
30
|
Omar AK, Klymko K, GrandPre T, Geissler PL, Brady JF. Tuning nonequilibrium phase transitions with inertia. J Chem Phys 2023; 158:074904. [PMID: 36813709 DOI: 10.1063/5.0138256] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In striking contrast to equilibrium systems, inertia can profoundly alter the structure of active systems. Here, we demonstrate that driven systems can exhibit effective equilibrium-like states with increasing particle inertia, despite rigorously violating the fluctuation-dissipation theorem. Increasing inertia progressively eliminates motility-induced phase separation and restores equilibrium crystallization for active Brownian spheres. This effect appears to be general for a wide class of active systems, including those driven by deterministic time-dependent external fields, whose nonequilibrium patterns ultimately disappear with increasing inertia. The path to this effective equilibrium limit can be complex, with finite inertia sometimes acting to accentuate nonequilibrium transitions. The restoration of near equilibrium statistics can be understood through the conversion of active momentum sources to passive-like stresses. Unlike truly equilibrium systems, the effective temperature is now density dependent, the only remnant of the nonequilibrium dynamics. This density-dependent temperature can in principle introduce departures from equilibrium expectations, particularly in response to strong gradients. Our results provide additional insight into the effective temperature ansatz while revealing a mechanism to tune nonequilibrium phase transitions.
Collapse
Affiliation(s)
- Ahmad K Omar
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA
| | - Katherine Klymko
- NERSC, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Trevor GrandPre
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Phillip L Geissler
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - John F Brady
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
31
|
Chattopadhyay J, Ramaswamy S, Dasgupta C, Maiti PK. Two-temperature activity induces liquid-crystal phases inaccessible in equilibrium. Phys Rev E 2023; 107:024701. [PMID: 36932588 DOI: 10.1103/physreve.107.024701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/17/2023] [Indexed: 02/08/2023]
Abstract
In equilibrium hard-rod fluids, and in effective hard-rod descriptions of anisotropic soft-particle systems, the transition from the isotropic (I) phase to the nematic phase (N) is observed above the rod aspect ratio L/D=3.70 as predicted by Onsager. We examine the fate of this criterion in a molecular dynamics study of a system of soft repulsive spherocylinders rendered active by coupling half the particles to a heat bath at a higher temperature than that imposed on the other half. We show that the system phase-separates and self-organizes into various liquid-crystalline phases that are not observed in equilibrium for the respective aspect ratios. In particular, we find a nematic phase for L/D=3 and a smectic phase for L/D=2 above a critical activity.
Collapse
Affiliation(s)
- Jayeeta Chattopadhyay
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Sriram Ramaswamy
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Chandan Dasgupta
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Prabal K Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
32
|
Feng M, Hou Z. Mode-coupling theory for the dynamics of dense underdamped active Brownian particle system. J Chem Phys 2023; 158:024102. [PMID: 36641396 DOI: 10.1063/5.0131080] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We present a theory to study the inertial effect on glassy dynamics of the underdamped active Brownian particle (UABP) system. Using the assumption of the nonequilibrium steady-state, we obtain an effective Fokker-Planck equation for the probability distribution function (PDF) as a function of positions and momentums. With this equation, we achieve the evolution equation of the intermediate scattering function through the Zwanzig-Mori projection operator method and the mode-coupling theory (MCT). Theoretical analysis shows that the inertia of the particle affects the memory function and corresponding glass transition by influencing the structure factor and a velocity correlation function. The theory provides theoretical support and guidance for subsequent simulation work.
Collapse
Affiliation(s)
- Mengkai Feng
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhonghuai Hou
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
33
|
De Karmakar S, Chugh A, Ganesh R. Collective behavior of soft self-propelled disks with rotational inertia. Sci Rep 2022; 12:22563. [PMID: 36581743 PMCID: PMC9800414 DOI: 10.1038/s41598-022-26994-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
We investigate collective properties of a large system of soft self-propelled inertial disks with active Langevin dynamics simulation in two dimensions. Rotational inertia of the disks is found to favor motility induced phase separation (MIPS), due to increased effective persistence of the disks. The MIPS phase diagram in the parameter space of rotational inertia and disk softness is reported over a range of values of translation inertia and self-propulsion strength of the disks. Our analytical prediction of the phase boundary between the homogeneous (no-MIPS) and MIPS state in the limit of small and large rotational inertia is found to agree with the numerical data over a large range of translational inertia. Shape of the high density MIPS phase is found to change from circular to rectangular one as the system moves away from the phase boundary. Structural and dynamical properties of the system, measured by several physical quantities, are found to be invariant in the central region of the high density MIPS phase, whereas they are found to vary gradually near the peripheral region of the high density phase. Importantly, the width of the peripheral region near the phase boundary is much larger compared to the narrow peripheral region far away from the phase boundary. Rich dynamics of the disks inside the high density MIPS phase is addressed. Spatial correlation of velocity of the disks is found to increase with rotational inertia and disk hardness. However, temporal correlation of the disks' velocity is found to be a function of rotational inertia, while it is independent of disk softness.
Collapse
Affiliation(s)
- Soumen De Karmakar
- grid.502813.d0000 0004 1796 2986Institute for Plasma Research, Bhat, Gandhinagar, 382428 India ,grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094 India
| | - Anshika Chugh
- grid.502813.d0000 0004 1796 2986Institute for Plasma Research, Bhat, Gandhinagar, 382428 India ,grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094 India
| | - Rajaraman Ganesh
- grid.502813.d0000 0004 1796 2986Institute for Plasma Research, Bhat, Gandhinagar, 382428 India ,grid.450257.10000 0004 1775 9822Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094 India
| |
Collapse
|
34
|
Hecht L, Mandal S, Löwen H, Liebchen B. Active Refrigerators Powered by Inertia. PHYSICAL REVIEW LETTERS 2022; 129:178001. [PMID: 36332249 DOI: 10.1103/physrevlett.129.178001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/09/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
We present the operational principle for a refrigerator that uses inertial effects in active Brownian particles to locally reduce their (kinetic) temperature by 2 orders of magnitude below the environmental temperature. This principle exploits the peculiar but so-far unknown shape of the phase diagram of inertial active Brownian particles to initiate motility-induced phase separation in the targeted cooling regime only. Remarkably, active refrigerators operate without requiring isolating walls opening the route toward using them to systematically absorb and trap, e.g., toxic substances from the environment.
Collapse
Affiliation(s)
- Lukas Hecht
- Institut für Physik kondensierter Materie, Technische Universität Darmstadt, Hochschulstraße 8, D-64289 Darmstadt, Germany
| | - Suvendu Mandal
- Institut für Physik kondensierter Materie, Technische Universität Darmstadt, Hochschulstraße 8, D-64289 Darmstadt, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II-Soft Matter, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Benno Liebchen
- Institut für Physik kondensierter Materie, Technische Universität Darmstadt, Hochschulstraße 8, D-64289 Darmstadt, Germany
| |
Collapse
|
35
|
De Karmakar S, Ganesh R. Motility-induced phase separation of self-propelled soft inertial disks. SOFT MATTER 2022; 18:7301-7308. [PMID: 36106916 DOI: 10.1039/d2sm00772j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The phase diagram of the phenomenon of motility-induced phase separation (MIPS) for a collection of self-propelled interacting disks over a large inertial range is explored using active Langevin dynamics simulation with particular emphasis on disk softness and effective size. It is shown that the parabola-like phase boundary between the homogeneous and MIPS states in the semi-log space of disk softness and effective size moves towards the hard disk limit with increase in inertia, before complete disappearance in the limit of large inertia. With increase in effective size of the disks, re-entrant phase separation, that is the system phase-separating from a homogeneous phase and eventually re-entering the homogeneous phase, is reported. The structural and the dynamical properties of the different phases are investigated in the considered inertial range. The particular shape of the phase boundary and the re-entrant behavior is explained based on several qualitative and quantitative results. Unlike most of the earlier studies on MIPS, which consider hard particle limits, our findings may be directly applicable to soft active matter for a range of physical and biological systems.
Collapse
Affiliation(s)
- Soumen De Karmakar
- Institute for Plasma Research, Bhat, Gandhinagar 382428, Gujarat, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.
| | - Rajaraman Ganesh
- Institute for Plasma Research, Bhat, Gandhinagar 382428, Gujarat, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
36
|
De Karmakar S, Ganesh R. Reentrant phase separation of a sparse collection of nonreciprocally aligning self-propelled disks. Phys Rev E 2022; 106:044607. [PMID: 36397508 DOI: 10.1103/physreve.106.044607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
We study a model of aligning self-propelled disks that nonreciprocally reorient the self-propulsion directions along the interparticle separation and towards the other disks. In the limit of small inertia and large softness, where conventional motility-induced phase separation is absent, we demonstrate that the homogeneous system at a small area fraction phase-separates into clusters and a low-density phase that, eventually, reenters the homogeneous phase with a monotonic increase in alignment strength. The disks inside the clusters move with a finite space-dependent speed, constantly shuttling between clusters through the surrounding low-density homogeneous phase while maintaining the hexatic structure properties within the clusters. The area fraction gradually increases from the periphery towards the center of the clusters with a negligible correlation of the velocity and propulsion direction inside the clusters. The novel collective behavior of reentrant phase separation is found to follow from both the limits of hard disks and extremely small inertia, tending towards the overdamped limit. However, important differences in the structural and dynamical properties are shown in the limit of hard disks and extremely small inertia, as compared to that for soft disks at finite inertia. We show that the cluster phase is associated with an effective temperature for a wide range of values of alignment strength, whereas an effective temperature is associated with the specific range of alignment in the low-density phase. We believe that the reentrant phase behavior in the limit of small area fraction and the remarkable properties of the clusters should be useful in understanding a wide range of physics issues, ranging from clogging and unclogging to information exchange and transport, in biological and synthetic self-propelled systems.
Collapse
Affiliation(s)
- Soumen De Karmakar
- Institute for Plasma Research, Bhat, Gandhinagar 382428, Gujarat, India and Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Rajaraman Ganesh
- Institute for Plasma Research, Bhat, Gandhinagar 382428, Gujarat, India and Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
37
|
Shea J, Jung G, Schmid F. Passive probe particle in an active bath: can we tell it is out of equilibrium? SOFT MATTER 2022; 18:6965-6973. [PMID: 36069290 DOI: 10.1039/d2sm00905f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We study a passive probe immersed in a fluid of active particles. Despite the system's non-equilibrium nature, the trajectory of the probe does not exhibit non-equilibrium signatures: its velocity distribution remains Gaussian, the second fluctuation dissipation theorem is not fundamentally violated, and the motion does not indicate breaking of time reversal symmetry. To tell that the probe is out of equilibrium requires examination of its behavior in tandem with that of the active fluid: the kinetic temperature of the probe does not equilibrate to that of the surrounding active particles. As a strategy to diagnose non-equilibrium from probe trajectories alone, we propose to examine their response to a small perturbation which reveals a non-equilibrium signature through a violation of the first fluctuation dissipation theorem.
Collapse
Affiliation(s)
- Jeanine Shea
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany.
| | - Gerhard Jung
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Friederike Schmid
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany.
| |
Collapse
|
38
|
Sanoria M, Chelakkot R, Nandi A. Percolation transition in phase-separating active fluid. Phys Rev E 2022; 106:034605. [PMID: 36266899 DOI: 10.1103/physreve.106.034605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
The motility-induced phase separation exhibited by active particles with repulsive interactions is well known. We show that the interaction softness of active particles destabilizes the highly ordered dense phase, leading to the formation of a porous cluster which spans the system. This soft limit can also be achieved if the particle motility is increased beyond a critical value, at which the system clearly exhibits all the characteristics of a standard percolation transition. We also show that in the athermal limit, active particles exhibit similar transitions even at low motility. With these additional new phases, the phase diagram of repulsive active particles is revealed to be richer than what was previously conceived.
Collapse
Affiliation(s)
- Monika Sanoria
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Raghunath Chelakkot
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Amitabha Nandi
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
39
|
Negi RS, Winkler RG, Gompper G. Emergent collective behavior of active Brownian particles with visual perception. SOFT MATTER 2022; 18:6167-6178. [PMID: 35916064 DOI: 10.1039/d2sm00736c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Systems comprised of self-steering active Brownian particles are studied via simulations for a minimal cognitive flocking model. The dynamics of the active Brownian particles is extended by an orientational response with limited maneuverability to an instantaneous visual input of the positions of neighbors within a vision cone and a cut-off radius. The system exhibits large-scale self-organized structures, which depend on selected parameter values, and, in particular, the presence of excluded-volume interactions. The emergent structures in two dimensions, such as worms, worm-aggregate coexistence, and hexagonally close-packed structures, are analysed and phase diagrams are constructed. The analysis of the particle's mean-square displacement shows ABP-like dynamics for dilute systems and the worm phase. In the limit of densely packed structures, the active diffusion coefficient is significantly smaller and depends on the number of particles in the cluster. Our analysis of the cluster-growth dynamics shows distinct differences to processes in systems of short-range attractive colloids in equilibrium. Specifically, the characteristic time for the growth and decay of clusters of a particular size is longer than that of isotropically attractive colloids, which we attribute to the non-reciprocal nature of the directed visual perception. Our simulations reveal a strong interplay between ABP-characteristic interactions, such as volume exclusion and rotational diffusion, and cognitive-based interactions and navigation.
Collapse
Affiliation(s)
- Rajendra Singh Negi
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52428 Jülich, Germany.
| | - Roland G Winkler
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52428 Jülich, Germany.
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52428 Jülich, Germany.
| |
Collapse
|
40
|
Self-sustained non-equilibrium co-existence of fluid and solid states in a strongly coupled complex plasma system. Sci Rep 2022; 12:13882. [PMID: 35974028 PMCID: PMC9381532 DOI: 10.1038/s41598-022-17939-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
A complex (dusty) plasma system is well known as a paradigmatic model for studying the kinetics of solid-liquid phase transitions in inactive condensed matter. At the same time, under certain conditions a complex plasma system can also display characteristics of an active medium with the micron-sized particles converting energy of the ambient environment into motility and thereby becoming active. We present a detailed analysis of the experimental complex plasmas system that shows evidence of a non-equilibrium stationary coexistence between a cold crystalline and a hot fluid state in the structure due to the conversion of plasma energy into the motion energy of microparticles in the central region of the system. The plasma mediated non-reciprocal interaction between the dust particles is the underlying mechanism for the enormous heating of the central subsystem, and it acts as a micro-scale energy source that keeps the central subsystem in the molten state. Accurate multiscale simulations of the system based on combined molecular dynamics and particle-in-cell approaches show that strong structural nonuniformity of the system under the action of electostatic trap makes development of instabilities a local process. We present both experimental tests conducted with a complex plasmas system in a DC glow discharge plasma and a detailed theoretical analysis.
Collapse
|
41
|
Muhsin M, Sahoo M. Inertial active Ornstein-Uhlenbeck particle in the presence of a magnetic field. Phys Rev E 2022; 106:014605. [PMID: 35974582 DOI: 10.1103/physreve.106.014605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
We consider an inertial active Ornstein-Uhlenbeck particle in an athermal bath. The particle is charged, constrained to move in a two-dimensional harmonic trap, and a magnetic field is applied perpendicular to the plane of motion. The steady-state correlations and the mean-square displacement are studied when the particle is confined as well as when it is set free from the trap. With the help of both numerical simulation and analytical calculations, we observe that inertia plays a crucial role in the dynamics in the presence of a magnetic field. In a highly viscous medium where the inertial effects are negligible, the magnetic field has no influence on the correlated behavior of position as well as velocity. In the time asymptotic limit, the overall displacement of the confined harmonic particle gets enhanced by the presence of a magnetic field and saturates for a stronger magnetic field. On the other hand, when the particle is set free, the overall displacement gets suppressed and approaches zero when the strength of the field is very high. Interestingly, it is seen that in the time asymptotic limit, the confined harmonic particle behaves like a passive particle and becomes independent of the activity, especially in the presence of a very strong magnetic field. Similarly, for a free particle the mean-square displacement in the long time limit becomes independent of activity even for a longer persistence of noise cor- relation in the dynamics.
Collapse
Affiliation(s)
- M Muhsin
- Department of Physics, University of Kerala, Kariavattom, Thiruvananthapuram 695581, India
| | - M Sahoo
- Department of Physics, University of Kerala, Kariavattom, Thiruvananthapuram 695581, India
| |
Collapse
|
42
|
Boymelgreen A, Schiffbauer J, Khusid B, Yossifon G. Synthetic electrically driven colloids: a platform for understanding collective behavior in soft matter. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Lei T, Yan R, Zhao N. Biased-angle effect on diffusion dynamics and phase separation in anisotropic active particle system. J Chem Phys 2022; 156:204901. [DOI: 10.1063/5.0090427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A deep understanding for collective behavior in an active matter system with complex interactions has far-reaching impact in biology. In the present work, we adopt Langevin dynamics simulations to investigate diffusion dynamics and phase separation in an anisotropic active particle system with a tunable biased angle α defined as the deviation between the active force direction and anisotropic orientation. Our results demonstrate that the biased angle can induce super-rotational diffusion dynamics characterized by a power-law relationship between the mean square angle displacement (MSAD) and the time interval Δ t in the form of MSAD ∼ Δ t β with β > 1 and also result in non-trivial phase separation kinetics. As activity is dominant, nucleation time shows a non-monotonic dependence on the biased angle. Moreover, there arises a distinct transition of phase separation, from spinodal decomposition without apparent nucleation time to binodal decomposition with prominent nucleation delay. A significant inhibition effect occurs at right and obtuse angles, where the remarkable super-rotational diffusion prevents particle aggregation, leading to a slow nucleation process. As active force is competitive to anisotropic interactions, the system is almost homogeneous, while, intriguingly, we observe a re-entrant phase separation as a small acute angle is introduced. The prominent super-rotational diffusion under small angles provides an optimum condition for particle adsorption and cluster growth and, thus, accounts for the re-entrance of phase separation. A consistent scenario for the physical mechanism of our observations is achieved by properly considering the modulation of the biased angle on the interplay between activity and anisotropic interactions.
Collapse
Affiliation(s)
- Ting Lei
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ran Yan
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Nanrong Zhao
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
44
|
Goswami K. Inertial particle under active fluctuations: Diffusion and work distributions. Phys Rev E 2022; 105:044123. [PMID: 35590542 DOI: 10.1103/physreve.105.044123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/30/2022] [Indexed: 06/15/2023]
Abstract
We study the underdamped motion of a passive particle in an active environment. Using the phase space path integral method we find the probability distribution function of position and velocity for a free and a harmonically bound particle. The environment is characterized by an active noise which is described as the Ornstein-Uhlenbeck process (OUP). Taking two similar, yet slightly different OUP models, it is shown how inertia along with other relevant parameters affect the dynamics of the particle. Further we investigate the work fluctuations of a harmonically trapped particle by considering the trap center being pulled at a constant speed. Finally, the fluctuation theorem of work is validated with an effective temperature in the steady-state limit.
Collapse
Affiliation(s)
- Koushik Goswami
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Powai 400076, India and Institute of Physics & Astronomy, University of Potsdam, Karl-Liebknecht-Straße 24/25, 14476 Potsdam-Golm, Germany
| |
Collapse
|
45
|
Chattopadhyay J, Pannir-Sivajothi S, Varma K, Ramaswamy S, Dasgupta C, Maiti PK. Heating leads to liquid-crystal and crystalline order in a two-temperature active fluid of rods. Phys Rev E 2021; 104:054610. [PMID: 34942740 DOI: 10.1103/physreve.104.054610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/22/2021] [Indexed: 11/07/2022]
Abstract
We report phase separation and liquid-crystal ordering induced by scalar activity in a system of soft repulsive spherocylinders (SRSs) of shape anisotropy L/D=5 using molecular dynamics (MD) simulations. Activity is introduced by increasing the temperature of half of the SRSs (labeled hot) while maintaining the temperature of the other half constant at a lower value (labeled cold). The difference between the two temperatures scaled by the lower temperature provides a measure of the activity. Starting from different equilibrium initial phases, we find that activity leads to segregation of the hot and cold particles. Activity also drives the cold particles through a phase transition to a more ordered state and the hot particles to a state of less order compared to the initial equilibrium state. The cold components of a homogeneous isotropic structure acquire nematic and, at higher activity, crystalline order. Similarly, the cold zone of a nematic initial state undergoes smectic and crystal ordering above a critical value of activity while the hot component turns isotropic. We find that the hot particles occupy a larger volume and exert an extra kinetic pressure, confining, compressing, and provoking an ordering transition of the cold-particle domains.
Collapse
Affiliation(s)
- Jayeeta Chattopadhyay
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Sindhana Pannir-Sivajothi
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Kaarthik Varma
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Sriram Ramaswamy
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Chandan Dasgupta
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Prabal K Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
46
|
Matsuyama H, Miyazaki K. Anomalous transport phenomenon of a charged Brownian particle under a thermal gradient and a magnetic field. Phys Rev E 2021; 104:054134. [PMID: 34942799 DOI: 10.1103/physreve.104.054134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/25/2021] [Indexed: 11/07/2022]
Abstract
There is a growing interest in the stochastic processes of nonequilibrium systems subject to nonconserved forces, such as the magnetic forces acting on charged particles and the chiral self-propelled force acting on active particles. In this paper, we consider the stationary transport of noninteracting Brownian particles under a constant magnetic field in a position-dependent temperature background. We demonstrate the existence of the Nernst-like stationary density current perpendicular to both the temperature gradient and magnetic field, induced by the intricate coupling between the nonconserved force and the multiplicative noises due to the position-dependent temperature.
Collapse
|
47
|
Jiang H, Hou Z. Nonequilibrium Dynamics of Chemically Active Particles. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Huijun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale & Department of Chemical Physics, iChEM, University of Science and Technology of China Hefei Anhui 230026 China
| | - Zhonghuai Hou
- Hefei National Laboratory for Physical Sciences at the Microscale & Department of Chemical Physics, iChEM, University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
48
|
Affiliation(s)
- Feng Lu
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering Tsinghua University Beijing China
| | - Chenxi Zhang
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering Tsinghua University Beijing China
- Joint Research Center of Fluid Syngas to Aromatics, Department of Chemical Engineering Tsinghua University Beijing China
| | - Yao Wang
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering Tsinghua University Beijing China
| | - Weizhong Qian
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering Tsinghua University Beijing China
| | - Fei Wei
- Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering Tsinghua University Beijing China
| |
Collapse
|
49
|
Nguyen GHP, Wittmann R, Löwen H. Active Ornstein-Uhlenbeck model for self-propelled particles with inertia. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:035101. [PMID: 34598179 DOI: 10.1088/1361-648x/ac2c3f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Self-propelled particles, which convert energy into mechanical motion, exhibit inertia if they have a macroscopic size or move inside a gaseous medium, in contrast to micron-sized overdamped particles immersed in a viscous fluid. Here we study an extension of the active Ornstein-Uhlenbeck model, in which self-propulsion is described by colored noise, to access these inertial effects. We summarize and discuss analytical solutions of the particle's mean-squared displacement and velocity autocorrelation function for several settings ranging from a free particle to various external influences, like a linear or harmonic potential and coupling to another particle via a harmonic spring. Taking into account the particular role of the initial particle velocity in a nonstationary setup, we observe all dynamical exponents between zero and four. After the typical inertial time, determined by the particle's mass, the results inherently revert to the behavior of an overdamped particle with the exception of the harmonically confined systems, in which the overall displacement is enhanced by inertia. We further consider an underdamped model for an active particle with a time-dependent mass, which critically affects the displacement in the intermediate time-regime. Most strikingly, for a sufficiently large rate of mass accumulation, the particle's motion is completely governed by inertial effects as it remains superdiffusive for all times.
Collapse
Affiliation(s)
- G H Philipp Nguyen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - René Wittmann
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
50
|
Muhsin M, Sahoo M, Saha A. Orbital magnetism of an active particle in viscoelastic suspension. Phys Rev E 2021; 104:034613. [PMID: 34654210 DOI: 10.1103/physreve.104.034613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022]
Abstract
We consider an active (self-propelling) particle in a viscoelastic fluid. The particle is charged and constrained to move in a two-dimensional harmonic trap. Its dynamics is coupled to a constant magnetic field applied perpendicular to its plane of motion via Lorentz force. Due to the finite activity, the generalized fluctuation-dissipation relation (GFDR) breaks down, driving the system away from equilibrium. While breaking GFDR, we have shown that the system can have finite classical orbital magnetism only when the dynamics of the system contains finite inertia. The orbital magnetic moment has been calculated exactly. Remarkably, we find that when the elastic dissipation timescale of the medium is larger (smaller) than the persistence timescale of the self-propelling particle, it is diamagnetic (paramagnetic). Therefore, for a given strength of the magnetic field, the system undergoes a transition from diamagnetic to paramagnetic state (and vice versa) simply by tuning the timescales of underlying physical processes, such as active fluctuations and viscoelastic dissipation. Interestingly, we also find that the magnetic moment, which vanishes at equilibrium, behaves nonmonotonically with respect to increasing persistence of self-propulsion, which drives the system out of equilibrium.
Collapse
Affiliation(s)
- M Muhsin
- Department of Physics, University of Kerala, Kariavattom, Thiruvananthapuram-695581, India
| | | | - Arnab Saha
- Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata-700009, India
| |
Collapse
|