1
|
Yu B, Chu Y, Betzholz R, Zhang S, Cai J. Engineering Artificial Atomic Systems of Giant Electric Dipole Moment. PHYSICAL REVIEW LETTERS 2024; 132:073202. [PMID: 38427885 DOI: 10.1103/physrevlett.132.073202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/06/2023] [Accepted: 01/22/2024] [Indexed: 03/03/2024]
Abstract
The electric dipole moment (EDM) plays a crucial role in determining the interaction strength of an atom with electric fields, making it paramount to quantum technologies based on coherent atomic control. We propose a scheme for engineering the potential in a Paul trap to realize a two-level quantum system with a giant EDM formed by the motional states of a trapped electron. We show that, under realistic experimental conditions, our system exhibits enhanced EDMs compared to those attainable with Rydberg atoms, serving as a complementary counterpart in the megahertz (MHz) resonance-frequency range. Furthermore, we show that such artificial atomic dipoles can be efficiently initialized, read out, and coherently controlled, thereby providing a potential platform for quantum technologies such as ultrahigh-sensitivity electric-field sensing.
Collapse
Affiliation(s)
- Baiyi Yu
- School of Physics, International Joint Laboratory on Quantum Sensing and Quantum Metrology, Hubei Key Laboratory of Gravitation and Quantum Physics, Institute for Quantum Science and Engineering, Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yaoming Chu
- School of Physics, International Joint Laboratory on Quantum Sensing and Quantum Metrology, Hubei Key Laboratory of Gravitation and Quantum Physics, Institute for Quantum Science and Engineering, Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ralf Betzholz
- School of Physics, International Joint Laboratory on Quantum Sensing and Quantum Metrology, Hubei Key Laboratory of Gravitation and Quantum Physics, Institute for Quantum Science and Engineering, Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shaoliang Zhang
- School of Physics, International Joint Laboratory on Quantum Sensing and Quantum Metrology, Hubei Key Laboratory of Gravitation and Quantum Physics, Institute for Quantum Science and Engineering, Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianming Cai
- School of Physics, International Joint Laboratory on Quantum Sensing and Quantum Metrology, Hubei Key Laboratory of Gravitation and Quantum Physics, Institute for Quantum Science and Engineering, Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
- Wuhan Institute of Quantum Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
2
|
Leu AD, Gely MF, Weber MA, Smith MC, Nadlinger DP, Lucas DM. Fast, High-Fidelity Addressed Single-Qubit Gates Using Efficient Composite Pulse Sequences. PHYSICAL REVIEW LETTERS 2023; 131:120601. [PMID: 37802949 DOI: 10.1103/physrevlett.131.120601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/29/2023] [Indexed: 10/08/2023]
Abstract
We use electronic microwave control methods to implement addressed single-qubit gates with high speed and fidelity, for ^{43}Ca^{+} hyperfine "atomic clock" qubits in a cryogenic (100 K) surface trap. For a single qubit, we benchmark an error of 1.5×10^{-6} per Clifford gate (implemented using 600 ns π/2 pulses). For 2 qubits in the same trap zone (ion separation 5 μm), we use a spatial microwave field gradient, combined with an efficient four-pulse scheme, to implement independent addressed gates. Parallel randomized benchmarking on both qubits yields an average error 3.4×10^{-5} per addressed π/2 gate. The scheme scales theoretically to larger numbers of qubits in a single register.
Collapse
Affiliation(s)
- A D Leu
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - M F Gely
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - M A Weber
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - M C Smith
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - D P Nadlinger
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - D M Lucas
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
3
|
Shapira Y, Cohen S, Akerman N, Stern A, Ozeri R. Robust Two-Qubit Gates for Trapped Ions Using Spin-Dependent Squeezing. PHYSICAL REVIEW LETTERS 2023; 130:030602. [PMID: 36763391 DOI: 10.1103/physrevlett.130.030602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
Entangling gates are an essential component of quantum computers. However, generating high-fidelity gates, in a scalable manner, remains a major challenge in all quantum information processing platforms. Accordingly, improving the fidelity and robustness of these gates has been a research focus in recent years. In trapped ions quantum computers, entangling gates are performed by driving the normal modes of motion of the ion chain, generating a spin-dependent force. Even though there has been significant progress in increasing the robustness and modularity of these gates, they are still sensitive to noise in the intensity of the driving field. Here we supplement the conventional spin-dependent displacement with spin-dependent squeezing, which creates a new interaction, that enables a gate that is robust to deviations in the amplitude of the driving field. We solve the general Hamiltonian and engineer its spectrum analytically. We also endow our gate with other, more conventional, robustness properties, making it resilient to many practical sources of noise and inaccuracies.
Collapse
Affiliation(s)
- Yotam Shapira
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sapir Cohen
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nitzan Akerman
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ady Stern
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Roee Ozeri
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
4
|
Ivanov SS, Torosov BT, Vitanov NV. High-Fidelity Quantum Control by Polychromatic Pulse Trains. PHYSICAL REVIEW LETTERS 2022; 129:240505. [PMID: 36563260 DOI: 10.1103/physrevlett.129.240505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
We introduce a quantum control technique using polychromatic pulse trains, consisting of pulses with different carrier frequencies, i.e., different detunings with respect to the qubit transition frequency. We derive numerous polychromatic pulse trains, which generate broadband, narrowband, and passband excitation profiles for different target transition probabilities. This makes it possible to create high-fidelity excitation profiles which are either (i) robust to deviations in the experimental parameters, which is attractive for quantum computing, or (ii) more sensitive to such variations, which is attractive for crosstalk elimination and quantum sensing. The method is demonstrated experimentally using one of IBM's superconducting quantum processors, in a very good agreement between theory and experiment. These results demonstrate both the excellent coherence properties of the IBM qubits and the accuracy, robustness, and flexibility of the proposed quantum control technique. They also show that the detuning is a control parameter which is as efficient as the pulse phase that is commonly used in composite pulses. Hence the method opens a variety of perspectives for quantum control in areas where phase manipulation is difficult or inaccurate.
Collapse
Affiliation(s)
- Svetoslav S Ivanov
- Department of Physics, St Kliment Ohridski University of Sofia, 5 James Bourchier Boulevard, 1164 Sofia, Bulgaria
| | - Boyan T Torosov
- Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko chaussée, 1784 Sofia, Bulgaria
| | - Nikolay V Vitanov
- Department of Physics, St Kliment Ohridski University of Sofia, 5 James Bourchier Boulevard, 1164 Sofia, Bulgaria
| |
Collapse
|
5
|
Schubert M, Kilzer L, Dubielzig T, Schilling M, Ospelkaus C, Hampel B. Active impedance matching of a cryogenic radio frequency resonator for ion traps. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:093201. [PMID: 36182479 DOI: 10.1063/5.0097583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
A combination of direct current (DC) fields and high amplitude radio frequency (RF) fields is necessary to trap ions in a Paul trap. Such high electric RF fields are usually reached with the help of a resonator in close proximity to the ion trap. Ion trap based quantum computers profit from good vacuum conditions and low heating rates that cryogenic environments provide. However, an impedance matching network between the resonator and its RF source is necessary, as an unmatched resonator would require higher input power due to power reflection. The reflected power would not contribute to the RF trapping potential, and the losses in the cable induce additional heat into the system. The electrical properties of the matching network components change during cooling, and a cryogenic setup usually prohibits physical access to integrated components while the experiment is running. This circumstance leads to either several cooling cycles to improve the matching at cryogenic temperatures or the operation of poorly matched resonators. In this work, we demonstrate an RF resonator that is actively matched to the wave impedance of coaxial cables and the signal source. The active part of the matching circuit consists of a varactor diode array. Its capacitance depends on the DC voltage applied from outside the cryostat. We present measurements of the power reflection, the Q-factor, and higher harmonic signals resulting from the nonlinearity of the varactor diodes. The RF resonator is tested in a cryostat at room temperature and cryogenic temperatures, down to 4.3 K. A superior impedance matching for different ion traps can be achieved with this type of resonator.
Collapse
Affiliation(s)
- M Schubert
- Institut für Elektrische Messtechnik und Grundlagen der Elektrotechnik, TU Braunschweig, Hans-Sommer Strasse 66, 38106 Braunschweig, Germany
| | - L Kilzer
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
| | - T Dubielzig
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
| | - M Schilling
- Institut für Elektrische Messtechnik und Grundlagen der Elektrotechnik, TU Braunschweig, Hans-Sommer Strasse 66, 38106 Braunschweig, Germany
| | - C Ospelkaus
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
| | - B Hampel
- Institut für Elektrische Messtechnik und Grundlagen der Elektrotechnik, TU Braunschweig, Hans-Sommer Strasse 66, 38106 Braunschweig, Germany
| |
Collapse
|
6
|
Müller MM, Said RS, Jelezko F, Calarco T, Montangero S. One decade of quantum optimal control in the chopped random basis. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:076001. [PMID: 35605567 DOI: 10.1088/1361-6633/ac723c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The chopped random basis (CRAB) ansatz for quantum optimal control has been proven to be a versatile tool to enable quantum technology applications such as quantum computing, quantum simulation, quantum sensing, and quantum communication. Its capability to encompass experimental constraints-while maintaining an access to the usually trap-free control landscape-and to switch from open-loop to closed-loop optimization (including with remote access-or RedCRAB) is contributing to the development of quantum technology on many different physical platforms. In this review article we present the development, the theoretical basis and the toolbox for this optimization algorithm, as well as an overview of the broad range of different theoretical and experimental applications that exploit this powerful technique.
Collapse
Affiliation(s)
- Matthias M Müller
- Peter Grünberg Institute-Quantum Control (PGI-8), Forschungszentrum Jülich GmbH, D-52425 Germany
| | - Ressa S Said
- Institute for Quantum Optics & Center for Integrated Quantum Science and Technology, Universität Ulm, D-89081 Germany
| | - Fedor Jelezko
- Institute for Quantum Optics & Center for Integrated Quantum Science and Technology, Universität Ulm, D-89081 Germany
| | - Tommaso Calarco
- Peter Grünberg Institute-Quantum Control (PGI-8), Forschungszentrum Jülich GmbH, D-52425 Germany
- Institute for Theoretical Physics, University of Cologne, D-50937 Germany
| | - Simone Montangero
- Dipartimento di Fisica e Astronomia 'G. Galilei', Università degli Studi di Padova & INFN, Sezione di Padova, I-35131 Italy
- Padua Quantum Technology Center, Università degli Studi di Padova, I-35131 Italy
| |
Collapse
|
7
|
Srinivas R, Burd SC, Knaack HM, Sutherland RT, Kwiatkowski A, Glancy S, Knill E, Wineland DJ, Leibfried D, Wilson AC, Allcock DTC, Slichter DH. High-fidelity laser-free universal control of trapped ion qubits. Nature 2021; 597:209-213. [PMID: 34497396 PMCID: PMC11165722 DOI: 10.1038/s41586-021-03809-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/07/2021] [Indexed: 11/09/2022]
Abstract
Universal control of multiple qubits-the ability to entangle qubits and to perform arbitrary individual qubit operations1-is a fundamental resource for quantum computing2, simulation3 and networking4. Qubits realized in trapped atomic ions have shown the highest-fidelity two-qubit entangling operations5-7 and single-qubit rotations8 so far. Universal control of trapped ion qubits has been separately demonstrated using tightly focused laser beams9-12 or by moving ions with respect to laser beams13-15, but at lower fidelities. Laser-free entangling methods16-20 may offer improved scalability by harnessing microwave technology developed for wireless communications, but so far their performance has lagged the best reported laser-based approaches. Here we demonstrate high-fidelity laser-free universal control of two trapped-ion qubits by creating both symmetric and antisymmetric maximally entangled states with fidelities of [Formula: see text] and [Formula: see text], respectively (68 per cent confidence level), corrected for initialization error. We use a scheme based on radiofrequency magnetic field gradients combined with microwave magnetic fields that is robust against multiple sources of decoherence and usable with essentially any trapped ion species. The scheme has the potential to perform simultaneous entangling operations on multiple pairs of ions in a large-scale trapped-ion quantum processor without increasing control signal power or complexity. Combining this technology with low-power laser light delivered via trap-integrated photonics21,22 and trap-integrated photon detectors for qubit readout23,24 provides an opportunity for scalable, high-fidelity, fully chip-integrated trapped-ion quantum computing.
Collapse
Affiliation(s)
- R Srinivas
- National Institute of Standards and Technology, Boulder, CO, USA.
- Department of Physics, University of Colorado, Boulder, CO, USA.
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK.
| | - S C Burd
- National Institute of Standards and Technology, Boulder, CO, USA
- Department of Physics, University of Colorado, Boulder, CO, USA
- Department of Physics, Stanford University, Stanford, CA, USA
| | - H M Knaack
- National Institute of Standards and Technology, Boulder, CO, USA
- Department of Physics, University of Colorado, Boulder, CO, USA
| | - R T Sutherland
- Physics Division, Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX, USA
- Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, TX, USA
| | - A Kwiatkowski
- National Institute of Standards and Technology, Boulder, CO, USA
- Department of Physics, University of Colorado, Boulder, CO, USA
| | - S Glancy
- National Institute of Standards and Technology, Boulder, CO, USA
| | - E Knill
- National Institute of Standards and Technology, Boulder, CO, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, CO, USA
| | - D J Wineland
- National Institute of Standards and Technology, Boulder, CO, USA
- Department of Physics, University of Colorado, Boulder, CO, USA
- Department of Physics, University of Oregon, Eugene, OR, USA
| | - D Leibfried
- National Institute of Standards and Technology, Boulder, CO, USA
| | - A C Wilson
- National Institute of Standards and Technology, Boulder, CO, USA
| | - D T C Allcock
- National Institute of Standards and Technology, Boulder, CO, USA
- Department of Physics, University of Colorado, Boulder, CO, USA
- Department of Physics, University of Oregon, Eugene, OR, USA
| | - D H Slichter
- National Institute of Standards and Technology, Boulder, CO, USA.
| |
Collapse
|
8
|
Milne AR, Hempel C, Li L, Edmunds CL, Slatyer HJ, Ball H, Hush MR, Biercuk MJ. Quantum Oscillator Noise Spectroscopy via Displaced Cat States. PHYSICAL REVIEW LETTERS 2021; 126:250506. [PMID: 34241523 DOI: 10.1103/physrevlett.126.250506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/21/2021] [Indexed: 06/13/2023]
Abstract
Quantum harmonic oscillators are central to many modern quantum technologies. We introduce a method to determine the frequency noise spectrum of oscillator modes through coupling them to a qubit with continuously driven qubit-state-dependent displacements. We reconstruct the noise spectrum using a series of different drive phase and amplitude modulation patterns in conjunction with a data-fusion routine based on convex optimization. We apply the technique to the identification of intrinsic noise in the motional frequency of a single trapped ion with sensitivity to fluctuations at the sub-Hz level in a spectral range from quasi-dc up to 50 kHz.
Collapse
Affiliation(s)
- Alistair R Milne
- ARC Centre of Excellence for Engineered Quantum Systems, The University of Sydney, School of Physics, New South Wales 2006, Australia
| | - Cornelius Hempel
- ARC Centre of Excellence for Engineered Quantum Systems, The University of Sydney, School of Physics, New South Wales 2006, Australia
| | - Li Li
- Q-CTRL Pty Ltd, Sydney, New South Wales 2006, Australia
| | - Claire L Edmunds
- ARC Centre of Excellence for Engineered Quantum Systems, The University of Sydney, School of Physics, New South Wales 2006, Australia
| | | | - Harrison Ball
- Q-CTRL Pty Ltd, Sydney, New South Wales 2006, Australia
| | | | - Michael J Biercuk
- ARC Centre of Excellence for Engineered Quantum Systems, The University of Sydney, School of Physics, New South Wales 2006, Australia
- Q-CTRL Pty Ltd, Sydney, New South Wales 2006, Australia
| |
Collapse
|
9
|
Blümel R, Grzesiak N, Nguyen NH, Green AM, Li M, Maksymov A, Linke NM, Nam Y. Efficient Stabilized Two-Qubit Gates on a Trapped-Ion Quantum Computer. PHYSICAL REVIEW LETTERS 2021; 126:220503. [PMID: 34152167 DOI: 10.1103/physrevlett.126.220503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/04/2021] [Indexed: 06/13/2023]
Abstract
In order to scale up quantum processors and achieve a quantum advantage, it is crucial to economize on the power requirement of two-qubit gates, make them robust to drift in experimental parameters, and shorten the gate times. Applicable to all quantum computer architectures whose two-qubit gates rely on phase-space closure, we present here a new gate-optimizing principle according to which negligible amounts of gate fidelity are traded for substantial savings in power, which, in turn, can be traded for substantial increases in gate speed and/or qubit connectivity. As a concrete example, we illustrate the method by constructing optimal pulses for entangling gates on a pair of ions within a trapped-ion chain, one of the leading quantum computing architectures. Our method is direct, noniterative, and linear, and, in some parameter regimes, constructs gate-steering pulses requiring up to an order of magnitude less power than the standard method. Additionally, our method provides increased robustness to mode drift. We verify the new trade-off principle experimentally on our trapped-ion quantum computer.
Collapse
Affiliation(s)
- Reinhold Blümel
- Wesleyan University, Middletown, Connecticut 06459, USA
- IonQ, College Park, Maryland 20740, USA
| | | | - Nhung H Nguyen
- Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, USA
| | - Alaina M Green
- Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, USA
| | - Ming Li
- IonQ, College Park, Maryland 20740, USA
| | | | - Norbert M Linke
- Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, USA
| | - Yunseong Nam
- IonQ, College Park, Maryland 20740, USA
- Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
10
|
Dubielzig T, Halama S, Hahn H, Zarantonello G, Niemann M, Bautista-Salvador A, Ospelkaus C. Ultra-low-vibration closed-cycle cryogenic surface-electrode ion trap apparatus. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:043201. [PMID: 34243401 DOI: 10.1063/5.0024423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 04/01/2021] [Indexed: 06/13/2023]
Abstract
We describe the design, commissioning, and operation of an ultra-low-vibration closed-cycle cryogenic ion trap apparatus. One hundred lines for low-frequency signals and eight microwave/radio frequency coaxial feed-lines offer the possibility of implementing a small-scale ion-trap quantum processor or simulator. With all supply cables attached, more than 1.3 W of cooling power at 5 K is still available for absorbing energy from electrical pulses introduced to control ions. The trap itself is isolated from vibrations induced by the cold head using a helium exchange gas interface. The performance of the vibration isolation system has been characterized using a Michelson interferometer, finding residual vibration amplitudes on the order of 10 nm rms. Trapping of 9Be+ ions has been demonstrated using a combination of laser ablation and photoionization.
Collapse
Affiliation(s)
- T Dubielzig
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
| | - S Halama
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
| | - H Hahn
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
| | - G Zarantonello
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
| | - M Niemann
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
| | - A Bautista-Salvador
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
| | - C Ospelkaus
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
| |
Collapse
|
11
|
Bardin JC, Slichter DH, Reilly DJ. Microwaves in Quantum Computing. IEEE JOURNAL OF MICROWAVES 2021; 1:10.1109/JMW.2020.3034071. [PMID: 34355217 PMCID: PMC8335598 DOI: 10.1109/jmw.2020.3034071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Quantum information processing systems rely on a broad range of microwave technologies and have spurred development of microwave devices and methods in new operating regimes. Here we review the use of microwave signals and systems in quantum computing, with specific reference to three leading quantum computing platforms: trapped atomic ion qubits, spin qubits in semiconductors, and superconducting qubits. We highlight some key results and progress in quantum computing achieved through the use of microwave systems, and discuss how quantum computing applications have pushed the frontiers of microwave technology in some areas. We also describe open microwave engineering challenges for the construction of large-scale, fault-tolerant quantum computers.
Collapse
Affiliation(s)
- Joseph C Bardin
- Department of Electrical and Computer Engineering, University of Massachusetts Amherst, Amherst, MA 01003 USA
- Google LLC, Goleta, CA 93117 USA
| | - Daniel H Slichter
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80305 USA
| | - David J Reilly
- Microsoft Inc., Microsoft Quantum Sydney, The University of Sydney, Sydney, NSW 2050, Australia
- ARC Centre of Excellence for Engineered Quantum Systems (EQuS), School of Physics, The University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
12
|
Abstract
Practical and useful quantum information processing requires substantial improvements with respect to current systems, both in the error rates of basic operations and in scale. The fundamental qualities of individual trapped-ion1 qubits are promising for long-term systems2, but the optics involved in their precise control are a barrier to scaling3. Planar-fabricated optics integrated within ion-trap devices can make such systems simultaneously more robust and parallelizable, as suggested by previous work with single ions4. Here we use scalable optics co-fabricated with a surface-electrode ion trap to achieve high-fidelity multi-ion quantum logic gates, which are often the limiting elements in building up the precise, large-scale entanglement that is essential to quantum computation. Light is efficiently delivered to a trap chip in a cryogenic environment via direct fibre coupling on multiple channels, eliminating the need for beam alignment into vacuum systems and cryostats and lending robustness to vibrations and beam-pointing drifts. This allows us to perform ground-state laser cooling of ion motion and to implement gates generating two-ion entangled states with fidelities greater than 99.3(2) per cent. This work demonstrates hardware that reduces noise and drifts in sensitive quantum logic, and simultaneously offers a route to practical parallelization for high-fidelity quantum processors5. Similar devices may also find applications in atom- and ion-based quantum sensing and timekeeping6.
Collapse
|
13
|
Hughes AC, Schäfer VM, Thirumalai K, Nadlinger DP, Woodrow SR, Lucas DM, Ballance CJ. Benchmarking a High-Fidelity Mixed-Species Entangling Gate. PHYSICAL REVIEW LETTERS 2020; 125:080504. [PMID: 32909787 DOI: 10.1103/physrevlett.125.080504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
We implement a two-qubit logic gate between a ^{43}Ca^{+} hyperfine qubit and a ^{88}Sr^{+} Zeeman qubit. For this pair of ion species, the S-P optical transitions are close enough that a single laser of wavelength 402 nm can be used to drive the gate but sufficiently well separated to give good spectral isolation and low photon scattering errors. We characterize the gate by full randomized benchmarking, gate set tomography, and Bell state analysis. The latter method gives a fidelity of 99.8(1)%, comparable to that of the best same-species gates and consistent with known sources of error.
Collapse
Affiliation(s)
- A C Hughes
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
| | - V M Schäfer
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
| | - K Thirumalai
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
| | - D P Nadlinger
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
| | - S R Woodrow
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
| | - D M Lucas
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
| | - C J Ballance
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|