1
|
Langford L, Omar AK. Phase Separation, Capillarity, and Odd-Surface Flows in Chiral Active Matter. PHYSICAL REVIEW LETTERS 2025; 134:068301. [PMID: 40021181 DOI: 10.1103/physrevlett.134.068301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/10/2025] [Indexed: 03/03/2025]
Abstract
Active phase separations evade canonical thermodynamic descriptions and have thus challenged our understanding of coexistence and interfacial phenomena. Considerable progress has been made towards a nonequilibrium theoretical description of these traditionally thermodynamic concepts. Spatial parity symmetry is conspicuously assumed in much of this progress, despite the ubiquity of chirality in experimentally realized systems. In this Letter, we derive a theory for the phase coexistence and interfacial fluctuations of a system that microscopically violates spatial parity. We find suppression of the phase separation as chirality is increased as well as the development of steady-state currents tangential to the interface dividing the phases. These odd flows are irrelevant to stationary interfacial properties, with stability, capillary fluctuations, and surface area minimization determined entirely by the capillary surface tension. Using large-scale Brownian dynamics simulations, we find excellent agreement with our theoretical scaling predictions.
Collapse
Affiliation(s)
- Luke Langford
- University of California, Berkeley, Department of Materials Science and Engineering, California 94720, USA
| | - Ahmad K Omar
- University of California, Berkeley, Department of Materials Science and Engineering, California 94720, USA
- Lawrence Berkeley National Laboratory, Materials Sciences Division, Berkeley, California 94720, USA
| |
Collapse
|
2
|
Othman S, Midya J, Auth T, Gompper G. Phase behavior and dynamics of active Brownian particles in an alignment field. Phys Rev E 2025; 111:015425. [PMID: 39972835 DOI: 10.1103/physreve.111.015425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 12/20/2024] [Indexed: 02/21/2025]
Abstract
Self-propelled particles that are subject to noise are a well-established generic model system for active matter. A homogeneous alignment field can be used to orient the direction of the self-propulsion velocity and to model systems like phoretic Janus particles with a magnetic dipole moment or magnetotactic bacteria in an external magnetic field. Computer simulations are used to predict the phase behavior and dynamics of self-propelled Brownian particles in a homogeneous alignment field in two dimensions. Phase boundaries of the gas-liquid coexistence region are calculated for various Péclet numbers, particle densities, and alignment field strengths. Critical points and exponents are calculated and, in agreement with previous simulations, do not seem to belong to the universality class of the 2D Ising model. Finally, the dynamics of spinodal decomposition for quenching the system from the one-phase to the two-phase coexistence region by increasing the Péclet number is characterized. Our results may help to identify parameters for optimal transport of active matter in complex environments.
Collapse
Affiliation(s)
- Sameh Othman
- Forschungszentrum Jülich, Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, 52425 Jülich, Germany
| | - Jiarul Midya
- Forschungszentrum Jülich, Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, 52425 Jülich, Germany
- Indian Institute of Technology, School of Basic Sciences, Bhubaneswar 752050, India
| | - Thorsten Auth
- Forschungszentrum Jülich, Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, 52425 Jülich, Germany
| | - Gerhard Gompper
- Forschungszentrum Jülich, Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, 52425 Jülich, Germany
| |
Collapse
|
3
|
Langford L, Omar AK. Theory of capillary tension and interfacial dynamics of motility-induced phases. Phys Rev E 2024; 110:054604. [PMID: 39690576 DOI: 10.1103/physreve.110.054604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/24/2024] [Indexed: 12/19/2024]
Abstract
The statistical mechanics of equilibrium interfaces has been well-established for over a half century. In the past decade, a wealth of observations have made increasingly clear that a new perspective is required to describe interfaces arbitrarily far from equilibrium. In this work, beginning from microscopic particle dynamics that break time-reversal symmetry, we derive the linear interfacial dynamics of coexisting motility-induced phases. Doing so allows us to identify the athermal energy scale that excites interfacial fluctuations and the nonequilibrium surface tension that resists these excitations. Our theory identifies that, in contrast to equilibrium fluids, this active surface tension contains contributions arising from nonconservative forces which act to suppress interfacial fluctuations and, crucially, is distinct from the mechanical surface tension of Kirkwood and Buff. We find that the interfacial stiffness scales linearly with the intrinsic persistence length of the constituent active particle trajectories, in agreement with simulation data. We demonstrate that at wavelengths much larger than the persistence length, the interface obeys surface-area minimizing Boltzmann statistics with our derived nonequilibrium interfacial stiffness playing a role identical to that of equilibrium systems.
Collapse
|
4
|
Höfling F, Dietrich S. Structure of liquid-vapor interfaces: Perspectives from liquid state theory, large-scale simulations, and potential grazing-incidence x-ray diffraction. J Chem Phys 2024; 160:104107. [PMID: 38469908 DOI: 10.1063/5.0186955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
Grazing-incidence x-ray diffraction (GIXRD) is a scattering technique that allows one to characterize the structure of fluid interfaces down to the molecular scale, including the measurement of surface tension and interface roughness. However, the corresponding standard data analysis at nonzero wave numbers has been criticized as to be inconclusive because the scattering intensity is polluted by the unavoidable scattering from the bulk. Here, we overcome this ambiguity by proposing a physically consistent model of the bulk contribution based on a minimal set of assumptions of experimental relevance. To this end, we derive an explicit integral expression for the background scattering, which can be determined numerically from the static structure factors of the coexisting bulk phases as independent input. Concerning the interpretation of GIXRD data inferred from computer simulations, we extend the model to account also for the finite sizes of the bulk phases, which are unavoidable in simulations. The corresponding leading-order correction beyond the dominant contribution to the scattered intensity is revealed by asymptotic analysis, which is characterized by the competition between the linear system size and the x-ray penetration depth in the case of simulations. Specifically, we have calculated the expected GIXRD intensity for scattering at the planar liquid-vapor interface of Lennard-Jones fluids with truncated pair interactions via extensive, high-precision computer simulations. The reported data cover interfacial and bulk properties of fluid states along the whole liquid-vapor coexistence line. A sensitivity analysis shows that our findings are robust with respect to the detailed definition of the mean interface position. We conclude that previous claims of an enhanced surface tension at mesoscopic scales are amenable to unambiguous tests via scattering experiments.
Collapse
Affiliation(s)
- F Höfling
- Freie Universität Berlin, Fachbereich Mathematik und Informatik, Arnimallee 6, 14195 Berlin, Germany
- Zuse Institut Berlin, Takustr. 7, 14195 Berlin, Germany
| | - S Dietrich
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstraße 3, 70569 Stuttgart, Germany
- IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
5
|
Hermann S, Schmidt M. Active crystallization from power functional theory. Phys Rev E 2024; 109:L022601. [PMID: 38491681 DOI: 10.1103/physreve.109.l022601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/06/2024] [Indexed: 03/18/2024]
Abstract
We address the gas, liquid, and crystal phase behaviors of active Brownian particles in three dimensions. The nonequilibrium force balance at coexistence leads to equality of state functions for which we use power functional approximations. Motility-induced phase separation starts at a critical point and quickly becomes metastable against active freezing for Péclet numbers above a nonequilibrium triple point. The mean swim speed acts as a state variable, similar to the density of depletion agents in colloidal demixing. We obtain agreement with recent simulation results and correctly predict the strength of particle number fluctuations in active fluids.
Collapse
Affiliation(s)
- Sophie Hermann
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| |
Collapse
|
6
|
Guo D, Hou Y, Liang H, Han L, Li B, Zhou B. Mechanism of Reduced Glutathione Induced Lysozyme Defolding and Molecular Self-Assembly. Foods 2023; 12:foods12101931. [PMID: 37238749 DOI: 10.3390/foods12101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The distinctive assembly behaviors of lysozyme (Lys) feature prominently in food, materials, biomedicine, and other fields and have intrigued many scholars. Although our previous work suggested that reduced glutathione (GSH) could induce lysozyme to form interfacial films at the air/water interface, the underlying mechanism is still obscure. In the present study, the effects of GSH on the disulfide bond and protein conformation of lysozyme were investigated by fluorescence spectroscopy, circular dichroism spectroscopy, and infrared spectroscopy. The findings demonstrated that GSH was able to break the disulfide bond in lysozyme molecules through the sulfhydryl/disulfide bond exchange reaction, thereby unraveling the lysozyme. The β-sheet structure of lysozyme expanded significantly, while the contents of α-helix and β-turn decreased. Furthermore, the interfacial tension and morphology analysis supported that the unfolded lysozyme tended to arrange macroscopic interfacial films at the air/water interface. It was found that pH and GSH concentrations had an impact on the aforementioned processes, with higher pH or GSH levels having a positive effect. This paper on the exploration of the mechanism of GSH-induced lysozyme interface assembly and the development of lysozyme-based green coatings has better instructive significance.
Collapse
Affiliation(s)
- Dashan Guo
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Yuwei Hou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Hongshan Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingyu Han
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
7
|
Omar AK, Row H, Mallory SA, Brady JF. Mechanical theory of nonequilibrium coexistence and motility-induced phase separation. Proc Natl Acad Sci U S A 2023; 120:e2219900120. [PMID: 37094152 PMCID: PMC10160997 DOI: 10.1073/pnas.2219900120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/24/2023] [Indexed: 04/26/2023] Open
Abstract
Nonequilibrium phase transitions are routinely observed in both natural and synthetic systems. The ubiquity of these transitions highlights the conspicuous absence of a general theory of phase coexistence that is broadly applicable to both nonequilibrium and equilibrium systems. Here, we present a general mechanical theory for phase separation rooted in ideas explored nearly a half-century ago in the study of inhomogeneous fluids. The core idea is that the mechanical forces within the interface separating two coexisting phases uniquely determine coexistence criteria, regardless of whether a system is in equilibrium or not. We demonstrate the power and utility of this theory by applying it to active Brownian particles, predicting a quantitative phase diagram for motility-induced phase separation in both two and three dimensions. This formulation additionally allows for the prediction of novel interfacial phenomena, such as an increasing interface width while moving deeper into the two-phase region, a uniquely nonequilibrium effect confirmed by computer simulations. The self-consistent determination of bulk phase behavior and interfacial phenomena offered by this mechanical perspective provide a concrete path forward toward a general theory for nonequilibrium phase transitions.
Collapse
Affiliation(s)
- Ahmad K. Omar
- Department of Materials Science and Engineering, University of California, Berkeley, CA94720
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Hyeongjoo Row
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Stewart A. Mallory
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
| | - John F. Brady
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
8
|
de Las Heras D, Zimmermann T, Sammüller F, Hermann S, Schmidt M. Perspective: How to overcome dynamical density functional theory. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:271501. [PMID: 37023762 DOI: 10.1088/1361-648x/accb33] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
We argue in favour of developing a comprehensive dynamical theory for rationalizing, predicting, designing, and machine learning nonequilibrium phenomena that occur in soft matter. To give guidance for navigating the theoretical and practical challenges that lie ahead, we discuss and exemplify the limitations of dynamical density functional theory (DDFT). Instead of the implied adiabatic sequence of equilibrium states that this approach provides as a makeshift for the true time evolution, we posit that the pending theoretical tasks lie in developing a systematic understanding of the dynamical functional relationships that govern the genuine nonequilibrium physics. While static density functional theory gives a comprehensive account of the equilibrium properties of many-body systems, we argue that power functional theory is the only present contender to shed similar insights into nonequilibrium dynamics, including the recognition and implementation of exact sum rules that result from the Noether theorem. As a demonstration of the power functional point of view, we consider an idealized steady sedimentation flow of the three-dimensional Lennard-Jones fluid and machine-learn the kinematic map from the mean motion to the internal force field. The trained model is capable of both predicting and designing the steady state dynamics universally for various target density modulations. This demonstrates the significant potential of using such techniques in nonequilibrium many-body physics and overcomes both the conceptual constraints of DDFT as well as the limited availability of its analytical functional approximations.
Collapse
Affiliation(s)
- Daniel de Las Heras
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Toni Zimmermann
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Florian Sammüller
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Sophie Hermann
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| |
Collapse
|
9
|
Caprini L, Löwen H. Flocking without Alignment Interactions in Attractive Active Brownian Particles. PHYSICAL REVIEW LETTERS 2023; 130:148202. [PMID: 37084461 DOI: 10.1103/physrevlett.130.148202] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Within a simple model of attractive active Brownian particles, we predict flocking behavior and challenge the widespread idea that alignment interactions are necessary to observe this collective phenomenon. Here, we show that even nonaligning attractive interactions can lead to a flocking state. Monitoring the velocity polarization as the order parameter, we reveal the onset of a first-order transition from a disordered phase, characterized by several small clusters, to a flocking phase, where a single flocking cluster is emerging. The scenario is confirmed by studying the spatial connected correlation function of particle velocities, which reveals scale-free behavior in flocking states and exponential-like decay for nonflocking configurations. Our predictions can be tested in microscopic and macroscopic experiments showing flocking, such as animals, migrating cells, and active colloids.
Collapse
Affiliation(s)
- L Caprini
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - H Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
10
|
Tschopp SM, Sammüller F, Hermann S, Schmidt M, Brader JM. Force density functional theory in- and out-of-equilibrium. Phys Rev E 2022; 106:014115. [PMID: 35974621 DOI: 10.1103/physreve.106.014115] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
When a fluid is subject to an external field, as is the case near an interface or under spatial confinement, then the density becomes spatially inhomogeneous. Although the one-body density provides much useful information, a higher level of resolution is provided by the two-body correlations. These give a statistical description of the internal microstructure of the fluid and enable calculation of the average interparticle force, which plays an essential role in determining both the equilibrium and dynamic properties of interacting fluids. We present a theoretical framework for the description of inhomogeneous (classical) many-body systems, based explicitly on the two-body correlation functions. By consideration of local Noether-invariance against spatial distortion of the system we demonstrate the fundamental status of the Yvon-Born-Green (YBG) equation as a local force-balance within the fluid. Using the inhomogeneous Ornstein-Zernike equation we show that the two-body correlations are density functionals and, thus, that the average interparticle force entering the YBG equation is also a functional of the one-body density. The force-based theory we develop provides an alternative to standard density functional theory for the study of inhomogeneous systems both in- and out-of-equilibrium. We compare force-based density profiles to the results of the standard potential-based (dynamical) density functional theory. In-equilibrium, we confirm both analytically and numerically that the standard approach yields profiles that are consistent with the compressibility pressure, whereas the force-density functional gives profiles consistent with the virial pressure. For both approaches we explicitly prove the hard-wall contact theorem that connects the value of the density profile at the hard-wall with the bulk pressure. The structure of the theory offers deep insights into the nature of correlation in dense and inhomogeneous systems.
Collapse
Affiliation(s)
- Salomée M Tschopp
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Florian Sammüller
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Sophie Hermann
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Joseph M Brader
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
11
|
Hermann S, Schmidt M. Why Noether's theorem applies to statistical mechanics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:213001. [PMID: 35255482 DOI: 10.1088/1361-648x/ac5b47] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Noether's theorem is familiar to most physicists due its fundamental role in linking the existence of conservation laws to the underlying symmetries of a physical system. Typically the systems are described in the particle-based context of classical mechanics or on the basis of field theory. We have recently shown (2021Commun. Phys.4176) that Noether's reasoning also applies to thermal systems, where fluctuations are paramount and one aims for a statistical mechanical description. Here we give a pedagogical introduction based on the canonical ensemble and apply it explicitly to ideal sedimentation. The relevant mathematical objects, such as the free energy, are viewed as functionals. This vantage point allows for systematic functional differentiation and the resulting identities express properties of both macroscopic average forces and molecularly resolved correlations in many-body systems, both in and out-of-equilibrium, and for active Brownian particles. To provide further background, we briefly describe the variational principles of classical density functional theory, of power functional theory, and of classical mechanics.
Collapse
Affiliation(s)
- Sophie Hermann
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| |
Collapse
|
12
|
Turci F, Wilding NB. Wetting Transition of Active Brownian Particles on a Thin Membrane. PHYSICAL REVIEW LETTERS 2021; 127:238002. [PMID: 34936774 DOI: 10.1103/physrevlett.127.238002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/14/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
We study nonequilibrium analogues of surface phase transitions in a minimal model of active particles in contact with a purely repulsive potential barrier that mimics a thin porous membrane. Under conditions of bulk motility-induced phase separation, the interaction strength ϵ_{w} of the barrier controls the affinity of the dense phase for the barrier region. We uncover clear signatures of a wetting phase transition as ϵ_{w} is varied. In common with its equilibrium counterpart, the character of this transition depends on the system dimensionality: a continuous transition with large density fluctuations and gas bubbles is uncovered in 2D while 3D systems exhibit a sharp transition absent of large correlations.
Collapse
Affiliation(s)
- Francesco Turci
- H.H.Wills Physics Laboratory, Royal Fort, Bristol BS8 1TL, United Kingdom
| | - Nigel B Wilding
- H.H.Wills Physics Laboratory, Royal Fort, Bristol BS8 1TL, United Kingdom
| |
Collapse
|
13
|
Mallory SA, Omar AK, Brady JF. Dynamic overlap concentration scale of active colloids. Phys Rev E 2021; 104:044612. [PMID: 34781543 DOI: 10.1103/physreve.104.044612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 10/06/2021] [Indexed: 11/07/2022]
Abstract
By introducing the notion of a dynamic overlap concentration scale, we identify additional universal features of the mechanical properties of active colloids. We codify these features by recognizing that the characteristic length scale of an active particle's trajectory, the run length, introduces a concentration scale ϕ^{*}. Large-scale simulations of repulsive active Brownian particles (ABPs) confirm that this run-length dependent concentration, the trajectory-space analog of the overlap concentration in polymer solutions, delineates distinct concentration regimes in which interparticle collisions alter particle trajectories. Using ϕ^{*} and concentration scales associated with colloidal jamming, the mechanical equation of state for ABPs collapses onto a set of principal curves that contain several overlooked features. The inclusion of these features qualitatively alters previous predictions of the behavior for active colloids, as we demonstrate by computing the spinodal for a suspension of purely repulsive ABPs. Our findings suggest that dynamic overlap concentration scales should help unravel the behavior of active and driven systems.
Collapse
Affiliation(s)
- Stewart A Mallory
- Department of Chemistry, The Pennsylvania State University, University Park, Pennyslvania 16802, USA
| | - Ahmad K Omar
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA
| | - John F Brady
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
14
|
Abstract
The original derivation of power functional theory [M. Schmidt and J. M. Brader, J. Chem. Phys. 138, 214101 (2013)] is reworked in some detail with a view to clarifying and simplifying the logic and making explicit the various functional dependencies. We note various issues with the original development and suggest a modification that allows us to avoid them. In the process, we also suggest an alternative interpretation of our results, which bears surprising similarities to classical density functional theory.
Collapse
Affiliation(s)
- James F Lutsko
- Center for Nonlinear Phenomena and Complex Systems CP 231, Université Libre de Bruxelles, Blvd. du Triomphe, 1050 Brussels, Belgium
| | - Martin Oettel
- Institute for Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| |
Collapse
|
15
|
Fausti G, Tjhung E, Cates ME, Nardini C. Capillary Interfacial Tension in Active Phase Separation. PHYSICAL REVIEW LETTERS 2021; 127:068001. [PMID: 34420338 DOI: 10.1103/physrevlett.127.068001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
In passive fluid-fluid phase separation, a single interfacial tension sets both the capillary fluctuations of the interface and the rate of Ostwald ripening. We show that these phenomena are governed by two different tensions in active systems, and compute the capillary tension σ_{cw} which sets the relaxation rate of interfacial fluctuations in accordance with capillary wave theory. We discover that strong enough activity can cause negative σ_{cw}. In this regime, depending on the global composition, the system self-organizes, either into a microphase-separated state in which coalescence is highly inhibited, or into an "active foam" state. Our results are obtained for Active Model B+, a minimal continuum model which, although generic, admits significant analytical progress.
Collapse
Affiliation(s)
- G Fausti
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - E Tjhung
- Department of Physics, University of Durham, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
| | - M E Cates
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - C Nardini
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, 75005 Paris, France
| |
Collapse
|
16
|
Dhont JKG, Park GW, Briels WJ. Motility-induced inter-particle correlations and dynamics: a microscopic approach for active Brownian particles. SOFT MATTER 2021; 17:5613-5632. [PMID: 33998621 DOI: 10.1039/d1sm00426c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Amongst the theoretical approaches towards the dynamics and phase behaviour of suspensions of active Brownian particles (ABPs), no attempt has been made to specify the motility-induced inter-particle correlations as quantified by the pair-correlation function. Here, we derive expressions for the pair-correlation function for ABPs with very short-ranged direct interactions for small and large swimming velocities and low concentrations. The pair-correlation function is the solution of a differential equation that is obtained from the Fokker-Planck equation for the probability density function of the positions and orientations of the ABPs. For large swimming Peclet numbers, λ, the pair-correlation function is highly asymmetric. The pair-correlation function attains a large value, ∼λ, within a small region of spatial extent, ∼1/λ, near contact of the ABPs when the ABPs approach each other. The pair-correlation function is small within a large region of spatial extent, ∼λ1/3, when the ABPs move apart, with a contact value that is essentially zero. From the explicit expressions for the pair-correlation function, Fick's diffusion equation is generalized to include motility. It is shown that mass transport, in case of large swimming velocities, is dominated by a preferred swimming direction that is induced by concentration gradients. The expression for the pair-correlation function derived in this paper could serve as a starting point to obtain approximate results for high concentrations, which could then be employed in a first-principles analysis of the dynamics and phase behaviour of ABPs at higher concentrations.
Collapse
Affiliation(s)
- J K G Dhont
- Institute of Biological Information Processing, IBI-4, Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany. and Heinrich Heine Universität, 40225 Düsseldorf, Germany
| | - G W Park
- Institute of Biological Information Processing, IBI-4, Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany.
| | - W J Briels
- Institute of Biological Information Processing, IBI-4, Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany. and MESA+ Institute for Nanotechnology, University of Twente, P. O. Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
17
|
Hermann S, de las Heras D, Schmidt M. Phase separation of active Brownian particles in two dimensions: anything for a quiet life. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1902585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Sophie Hermann
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, Bayreuth, Germany
| | - Daniel de las Heras
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, Bayreuth, Germany
| |
Collapse
|
18
|
Neta PD, Tasinkevych M, Telo da Gama MM, Dias CS. Wetting of a solid surface by active matter. SOFT MATTER 2021; 17:2468-2478. [PMID: 33496301 DOI: 10.1039/d0sm02008g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A lattice model is used to study repulsive active particles at a planar surface. A rejection-free Kinetic Monte Carlo method is employed to characterize the wetting behaviour. The model predicts a motility-induced phase separation of active particles, and the bulk coexistence of dense liquid-like and dilute vapour-like steady states is determined. An "ensemble", with a varying number of particles, analogous to a grand canonical ensemble in equilibrium, is introduced. The formation and growth of the liquid film between the solid surface and the vapour phase is investigated. At constant activity, as the system is brought towards coexistence from the vapour side, the thickness of the adsorbed film exhibits a divergent behaviour regardless of the activity. This suggests a complete wetting scenario along the full coexistence curve.
Collapse
Affiliation(s)
- P D Neta
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal. and Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - M Tasinkevych
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal. and Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - M M Telo da Gama
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal. and Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - C S Dias
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal. and Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
19
|
Speck T. Coexistence of active Brownian disks: van der Waals theory and analytical results. Phys Rev E 2021; 103:012607. [PMID: 33601548 DOI: 10.1103/physreve.103.012607] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/06/2021] [Indexed: 11/07/2022]
Abstract
At thermal equilibrium, intensive quantities like temperature and pressure have to be uniform throughout the system, restricting inhomogeneous systems composed of different phases. The paradigmatic example is the coexistence of vapor and liquid, a state that can also be observed for active Brownian particles steadily driven away from equilibrium. Recently, a strategy has been proposed that allows to predict phase equilibria of active particles [Solon et al., Phys. Rev. E 97, 020602(R) (2018)2470-004510.1103/PhysRevE.97.020602]. Here we elaborate on this strategy and formulate it in the framework of a van der Waals theory for active disks. For a given equation of state, we derive the effective free energy analytically and show that it yields coexisting densities in very good agreement with numerical results. We discuss the interfacial tension and the relation to Cahn-Hilliard models.
Collapse
Affiliation(s)
- Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| |
Collapse
|
20
|
Treffenstädt LL, Schmidt M. Universality in Driven and Equilibrium Hard Sphere Liquid Dynamics. PHYSICAL REVIEW LETTERS 2021; 126:058002. [PMID: 33605743 DOI: 10.1103/physrevlett.126.058002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/04/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
We demonstrate that the time evolution of the van Hove dynamical pair correlation function is governed by adiabatic forces that arise from the free energy and by superadiabatic forces that are induced by the flow of the van Hove function. The superadiabatic forces consist of drag, viscous, and structural contributions, as occur in active Brownian particles, in liquids under shear and in lane forming mixtures. For hard sphere liquids, we present a power functional theory that predicts these universal force fields in quantitative agreement with our Brownian dynamics simulation results.
Collapse
Affiliation(s)
- Lucas L Treffenstädt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| |
Collapse
|
21
|
Shi XQ, Fausti G, Chaté H, Nardini C, Solon A. Self-Organized Critical Coexistence Phase in Repulsive Active Particles. PHYSICAL REVIEW LETTERS 2020; 125:168001. [PMID: 33124871 DOI: 10.1103/physrevlett.125.168001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
We revisit motility-induced phase separation in two models of active particles interacting by pairwise repulsion and uncover new qualitative features: the resulting dense phase contains gas bubbles distributed algebraically up to a typically extremely large cutoff scale. At large enough system size and/or global density, all the gas may be contained inside the bubbles, at which point the system is microphase separated with a finite cutoff bubble scale. We further observe that the ordering is clearly anomalous, with different dynamics for the coarsening of the dense phase and of the gas bubbles. This self-organized critical phenomenology is reproduced by a "reduced bubble model" that implements the basic idea of reverse Ostwald ripening put forward in Tjhung et al. [Phys. Rev. X 8, 031080 (2018)PRXHAE2160-330810.1103/PhysRevX.8.031080].
Collapse
Affiliation(s)
- Xia-Qing Shi
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Giordano Fausti
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Hugues Chaté
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Computational Science Research Center, Beijing 100193, China
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, 75005 Paris, France
| | - Cesare Nardini
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, 75005 Paris, France
| | - Alexandre Solon
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, 75005 Paris, France
| |
Collapse
|
22
|
Abstract
AbstractUsing Brownian dynamics simulations, we investigate the response to shear of a two-dimensional system of quasi-hard disks that are confined in the velocity gradient direction by a smooth external potential. Shearing the confined system leads to a homogenization of the one-body density profile. In order to rationalize this deconfinement effect, we split the internal one-body force field into adiabatic and superadiabatic contributions. We demonstrate that the superadiabatic force field consists of viscous and of structural contributions. We give an empirical scaling law that yields results for the superadiabatic force profiles both in the flow and in the gradient direction, in excellent agreement with the simulation data.
Collapse
|
23
|
Abstract
Large-scale collective behavior in suspensions of active particles can be understood from the balance of statistical forces emerging beyond the direct microscopic particle interactions. Here we review some aspects of the collective forces that can arise in suspensions of self-propelled active Brownian particles: wall forces under confinement, interfacial forces, and forces on immersed bodies mediated by the suspension. Even for non-aligning active particles, these forces are intimately related to a non-uniform polarization of particle orientations induced by walls and bodies, or inhomogeneous density profiles. We conclude by pointing out future directions and promising areas for the application of collective forces in synthetic active matter, as well as their role in living active matter.
Collapse
Affiliation(s)
- Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany.
| |
Collapse
|