1
|
Ruiz-Franco J, Tauber J, van der Gucht J. Cross-linker Mobility Governs Fracture Behavior of Catch-Bonded Networks. PHYSICAL REVIEW LETTERS 2023; 130:118203. [PMID: 37001087 DOI: 10.1103/physrevlett.130.118203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/24/2023] [Indexed: 06/19/2023]
Abstract
While most chemical bonds weaken under the action of mechanical force (called slip bond behavior), nature has developed bonds that do the opposite: their lifetime increases as force is applied. While such catch bonds have been studied quite extensively at the single molecule level and in adhesive contacts, recent work has shown that they are also abundantly present as crosslinkers in the actin cytoskeleton. However, their role and the mechanism by which they operate in these networks have remained unclear. Here, we present computer simulations that show how polymer networks crosslinked with either slip or catch bonds respond to mechanical stress. Our results reveal that catch bonding may be required to protect dynamic networks against fracture, in particular for mobile linkers that can diffuse freely after unbinding. While mobile slip bonds lead to networks that are very weak at high stresses, mobile catch bonds accumulate in high stress regions and thereby stabilize cracks, leading to a more ductile fracture behavior. This allows cells to combine structural adaptivity at low stresses with mechanical stability at high stresses.
Collapse
Affiliation(s)
- José Ruiz-Franco
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708WE Wageningen, Netherlands
| | - Justin Tauber
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708WE Wageningen, Netherlands
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708WE Wageningen, Netherlands
| |
Collapse
|
2
|
Picu R, Jin S. Toughness of Network Materials: Structural Parameters Controlling Damage Accumulation. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS 2023; 172:105176. [PMID: 36582492 PMCID: PMC9794194 DOI: 10.1016/j.jmps.2022.105176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Many materials have a network of fibers as their main structural component and are referred to as network materials. Their strength and toughness are important in both engineering and biology. In this work we consider stochastic model fiber networks without pre-existing cracks and study their rupture mechanism. These materials soften as the crosslinks or fibers fail and exhibit either brittle failure immediately after the peak stress, or a more gradual, ductile rupture in the post peak regime. We observe that ductile failure takes place at constant energy release rate defined in the absence of pre-existing cracks as the strain derivative of the specific energy released. The network parameters controlling the energy release rate are identified and discussed in relation to the Lake-Thomas theory which applies to crack growth situations. We also observe a ductile to brittle failure transition as the network becomes more affine and relate the embrittlement to the reduction of mechanical heterogeneity of the network. Further, we confirm previous reports that the network strength scales linearly with the bond strength and with the crosslink density. The present results extend the Lake-Thomas theory to networks without pre-existing cracks which fail by the gradual accumulation of distributed damage and contribute to the development of a physical picture of failure in stochastic network materials.
Collapse
Affiliation(s)
- R.C. Picu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - S. Jin
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| |
Collapse
|
3
|
Syed S, MacKintosh FC, Shivers JL. Structural Features and Nonlinear Rheology of Self-Assembled Networks of Cross-Linked Semiflexible Polymers. J Phys Chem B 2022; 126:10741-10749. [PMID: 36475770 DOI: 10.1021/acs.jpcb.2c05439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Disordered networks of semiflexible filaments are common support structures in biology. Familiar examples include fibrous matrices in blood clots, bacterial biofilms, and essential components of cells and tissues of plants, animals, and fungi. Despite the ubiquity of these networks in biomaterials, we have only a limited understanding of the relationship between their structural features and their highly strain-sensitive mechanical properties. In this work, we perform simulations of three-dimensional networks produced by the irreversible formation of cross-links between linker-decorated semiflexible filaments. We characterize the structure of networks formed by a simple diffusion-dependent assembly process and measure their associated steady-state rheological features at finite temperature over a range of applied prestrains that encompass the strain-stiffening transition. We quantify the dependence of network connectivity on cross-linker availability and detail the associated connectivity dependence of both linear elasticity and nonlinear strain-stiffening behavior, drawing comparisons with prior experimental measurements of the cross-linker concentration-dependent elasticity of actin gels.
Collapse
Affiliation(s)
- Saamiya Syed
- College of Technology, University of Houston, Houston, Texas 77204, United States.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Fred C MacKintosh
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States.,Department of Chemistry, Rice University, Houston, Texas 77005, United States.,Department of Physics & Astronomy, Rice University, Houston, Texas 77005, United States
| | - Jordan L Shivers
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
4
|
Tauber J, van der Gucht J, Dussi S. Stretchy and disordered: Toward understanding fracture in soft network materials via mesoscopic computer simulations. J Chem Phys 2022; 156:160901. [PMID: 35490006 DOI: 10.1063/5.0081316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Soft network materials exist in numerous forms ranging from polymer networks, such as elastomers, to fiber networks, such as collagen. In addition, in colloidal gels, an underlying network structure can be identified, and several metamaterials and textiles can be considered network materials as well. Many of these materials share a highly disordered microstructure and can undergo large deformations before damage becomes visible at the macroscopic level. Despite their widespread presence, we still lack a clear picture of how the network structure controls the fracture processes of these soft materials. In this Perspective, we will focus on progress and open questions concerning fracture at the mesoscopic scale, in which the network architecture is clearly resolved, but neither the material-specific atomistic features nor the macroscopic sample geometries are considered. We will describe concepts regarding the network elastic response that have been established in recent years and turn out to be pre-requisites to understand the fracture response. We will mostly consider simulation studies, where the influence of specific network features on the material mechanics can be cleanly assessed. Rather than focusing on specific systems, we will discuss future challenges that should be addressed to gain new fundamental insights that would be relevant across several examples of soft network materials.
Collapse
Affiliation(s)
- Justin Tauber
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
| | - Simone Dussi
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
5
|
Mao X, Shokef Y. Introduction to force transmission by nonlinear biomaterials. SOFT MATTER 2021; 17:10172-10176. [PMID: 34755159 DOI: 10.1039/d1sm90194j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Xiaoming Mao and Yair Shokef introduce the Soft Matter themed collection on force transmission by nonlinear biomaterials.
Collapse
Affiliation(s)
- Xiaoming Mao
- Department of Physics, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| | - Yair Shokef
- School of Mechanical Engineering, Sackler Center for Computational Molecular and Materials Science, and Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
6
|
Tauber J, Rovigatti L, Dussi S, van der Gucht J. Sharing the Load: Stress Redistribution Governs Fracture of Polymer Double Networks. Macromolecules 2021; 54:8563-8574. [PMID: 34602652 PMCID: PMC8482750 DOI: 10.1021/acs.macromol.1c01275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 11/28/2022]
Abstract
![]()
The stress response
of polymer double networks depends not only
on the properties of the constituent networks but also on the interactions
arising between them. Here, we demonstrate, via coarse-grained simulations,
that both their global stress response and their microscopic fracture
mechanics are governed by load sharing through these internetwork
interactions. By comparing our results with affine predictions, where
stress redistribution is by definition homogeneous, we show that stress
redistribution is highly inhomogeneous. In particular, the affine
prediction overestimates the fraction of broken chains by almost an
order of magnitude. Furthermore, homogeneous stress distribution predicts
a single fracture process, while in our simulations, fracture of sacrificial
chains takes place in two steps governed by load sharing within a
network and between networks, respectively. Our results thus provide
a detailed microscopic picture of how inhomogeneous stress redistribution
after rupture of chains governs the fracture of polymer double networks.
Collapse
Affiliation(s)
- Justin Tauber
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Lorenzo Rovigatti
- Dipartimento di Fisica, Sapienza-Università di Roma, Piazzale A. Moro 2, 00185 Roma, Italy
| | - Simone Dussi
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
7
|
Richard D, Rainone C, Lerner E. Finite-size study of the athermal quasistatic yielding transition in structural glasses. J Chem Phys 2021; 155:056101. [PMID: 34364355 DOI: 10.1063/5.0053303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- David Richard
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Corrado Rainone
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
8
|
Tauber J, Kok AR, van der Gucht J, Dussi S. The role of temperature in the rigidity-controlled fracture of elastic networks. SOFT MATTER 2020; 16:9975-9985. [PMID: 33034611 DOI: 10.1039/d0sm01063d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We study the influence of thermal fluctuations on the fracture of elastic networks, via simulations of the uniaxial extension of central-force spring networks with varying rigidity. Studying their failure response, both at the macroscopic and microscopic level, we find that an increase in temperature corresponds to a more homogeneous stress (re)distribution and induces thermally activated failure of springs. As a consequence, the material strength decreases upon increasing temperature, the microscopic damage spreads over a larger area and a more ductile fracture process is observed. These effects are modulated by network rigidity and can therefore be tuned via the network connectivity and the rupture threshold of the springs. Knowledge of the interplay between temperature and rigidity improves our understanding of the fracture of elastic network materials, such as (biological) polymer networks, and can help to refine design principles for tough soft materials.
Collapse
Affiliation(s)
- Justin Tauber
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
9
|
Burla F, Dussi S, Martinez-Torres C, Tauber J, van der Gucht J, Koenderink GH. Connectivity and plasticity determine collagen network fracture. Proc Natl Acad Sci U S A 2020; 117:8326-8334. [PMID: 32238564 PMCID: PMC7165426 DOI: 10.1073/pnas.1920062117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Collagen forms the structural scaffold of connective tissues in all mammals. Tissues are remarkably resistant against mechanical deformations because collagen molecules hierarchically self-assemble in fibrous networks that stiffen with increasing strain. Nevertheless, collagen networks do fracture when tissues are overloaded or subject to pathological conditions such as aneurysms. Prior studies of the role of collagen in tissue fracture have mainly focused on tendons, which contain highly aligned bundles of collagen. By contrast, little is known about fracture of the orientationally more disordered collagen networks present in many other tissues such as skin and cartilage. Here, we combine shear rheology of reconstituted collagen networks with computer simulations to investigate the primary determinants of fracture in disordered collagen networks. We show that the fracture strain is controlled by the coordination number of the network junctions, with less connected networks fracturing at larger strains. The hierarchical structure of collagen fine-tunes the fracture strain by providing structural plasticity at the network and fiber level. Our findings imply that low connectivity and plasticity provide protective mechanisms against network fracture that can optimize the strength of biological tissues.
Collapse
Affiliation(s)
- Federica Burla
- Biological Soft Matter Group, Department of Living Matter, AMOLF, 1098 XG Amsterdam, The Netherlands
| | - Simone Dussi
- Physical Chemistry and Soft Matter, Wageningen University and Research, 6708 WE Wageningen, The Netherlands
| | - Cristina Martinez-Torres
- Biological Soft Matter Group, Department of Living Matter, AMOLF, 1098 XG Amsterdam, The Netherlands
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Justin Tauber
- Physical Chemistry and Soft Matter, Wageningen University and Research, 6708 WE Wageningen, The Netherlands
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University and Research, 6708 WE Wageningen, The Netherlands;
| | - Gijsje H Koenderink
- Biological Soft Matter Group, Department of Living Matter, AMOLF, 1098 XG Amsterdam, The Netherlands;
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|