1
|
Tang J, Zuo Y, Xu XW, Huang R, Miranowicz A, Nori F, Jing H. Achieving Robust Single-Photon Blockade with a Single Nanotip. NANO LETTERS 2025; 25:4705-4712. [PMID: 40037624 PMCID: PMC11951157 DOI: 10.1021/acs.nanolett.4c05433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
Backscattering losses (BSL), arising from intrinsic imperfections or unavoidable external perturbations in optical resonators, can severely impact photonic devices. In single-photon systems, robust quantum correlations against BSL remain largely unexplored despite their significance for various applications. Here, we demonstrate that single-photon blockade (SPB), a purely quantum effect, can be preserved against BSL by introducing a nanotip near a Kerr nonlinear resonator with intrinsic defects. Without the tip, BSL disrupts SPB, but tuning the tip's position restores robustness even under strong BSL. Notably, quantum correlations emerge while the classical mean photon number remains suppressed due to the interplay between resonator nonlinearity and tip-induced optical coupling. Our findings highlight nanoscale engineering as a powerful tool to protect and harness fragile quantum correlations, paving the way for robust single-photon sources and backscattering-immune quantum devices.
Collapse
Affiliation(s)
- Jian Tang
- Key
Laboratory of Low-Dimensional Quantum Structures and Quantum Control
of Ministry of Education, Department of Physics and Synergetic Innovation
Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
| | - Yunlan Zuo
- Key
Laboratory of Low-Dimensional Quantum Structures and Quantum Control
of Ministry of Education, Department of Physics and Synergetic Innovation
Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
- School
of Physics and Chemistry, Hunan First Normal
University, Changsha 410205, China
| | - Xun-Wei Xu
- Key
Laboratory of Low-Dimensional Quantum Structures and Quantum Control
of Ministry of Education, Department of Physics and Synergetic Innovation
Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
| | - Ran Huang
- Quantum
Information Physics Theory Research Team, Quantum Computing Center, RIKEN, Wako-shi, Saitama 351-0198, Japan
| | - Adam Miranowicz
- Quantum
Information Physics Theory Research Team, Quantum Computing Center, RIKEN, Wako-shi, Saitama 351-0198, Japan
- Institute
of Spintronics and Quantum Information, Faculty of Physics and Astronomy, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Franco Nori
- Quantum
Information Physics Theory Research Team, Quantum Computing Center, RIKEN, Wako-shi, Saitama 351-0198, Japan
- Physics
Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, United
States
| | - Hui Jing
- Key
Laboratory of Low-Dimensional Quantum Structures and Quantum Control
of Ministry of Education, Department of Physics and Synergetic Innovation
Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
- Institute
for Quantum Science and Technology, College of Science, National University of Defense Technology, Changsha 410073, P.R.China
| |
Collapse
|
2
|
Liu J, Hu S, Zhong W, Cheng G, Chen A. Controllable antibunching of two-magnon bundle in a hybrid ferromagnet-superconductor system. OPTICS LETTERS 2025; 50:682-685. [PMID: 39815592 DOI: 10.1364/ol.544620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025]
Abstract
We propose an alternative scheme for implementing the antibunching effects of two-magnon bundle in a hybrid ferromagnet-superconductor system, where a magnon mode from the yttrium iron garnet (YIG) sphere interacts with a three-level superconducting qubit via photon virtual excitation in the microwave cavity. With the help of the qubit driving from the ground state to the excited state, the cascaded emission of magnon occurs and then the two-magnon bundle is formed. By analyzing the ordinary and generalized second-order correlation functions, it is found that the antibunched two-magnon bundle could be achieved via properly choosing the system parameters, which is originated from the anharmonicity of dressed energy levels induced by magnon-qubit couplings. The distinct feature is that high-proportion n-magnon emission could be obtained via relaxing the restriction on the strong qubit driving and magnon-qubit coupling, which may provide a feasible method to realize the high-quality multimagnon source for quantum metrology and quantum information processing.
Collapse
|
3
|
Lu TX, Li ZS, Yin B, Wang J, Xiao X, Jing H. Magnetic-field-direction-controlled slow light and second-order sidebands in a cavity-magnon optomechanical system. OPTICS EXPRESS 2024; 32:48302-48314. [PMID: 39876139 DOI: 10.1364/oe.546225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/09/2024] [Indexed: 01/30/2025]
Abstract
We theoretically study how the magnetic field direction controls both the transmission rate and the group delay of the signal, as well as the second-order sideband process in a hybrid cavity-magnon optomechanical system. By tuning the direction of the bias magnetic field, either a positive or negative magnon Kerr coefficient can be achieved, leading to a corresponding shift in the magnon frequency. As a result, the transmission rate can be significantly modified, resulting in a Fano-like transparency spectrum governed by the magnetic field direction, along with a slow-to-fast light switch also influenced by that direction. Moreover, we study the impact of magnetic field direction on the second-order sidebands, revealing that the enhancement of the second-order sideband effect is dependent on this direction. These findings pave the way to engineering magnon Kerr nonlinearity-assisted optomechanical devices for applications in signal propagation and storage.
Collapse
|
4
|
Bin Q, Jing H, Wu Y, Nori F, Lü XY. Nonreciprocal Bundle Emissions of Quantum Entangled Pairs. PHYSICAL REVIEW LETTERS 2024; 133:043601. [PMID: 39121413 DOI: 10.1103/physrevlett.133.043601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/17/2024] [Indexed: 08/11/2024]
Abstract
Realizing precise control over multiquanta emission is crucial for quantum information processing, especially when integrated with advanced techniques of manipulating quantum states. Here, by spinning the resonator to induce the Sagnac effect, we can obtain nonreciprocal photon-phonon and photon-magnon super-Rabi oscillations under conditions of optically driving resonance transitions. Opening dissipative channels for such super-Rabi oscillations enables the realization of directional bundle emissions of entangled photon-phonon pairs and photon-magnon pairs by transferring the pure multiquanta state to a bundled multiquanta outside of the system. This nonreciprocal emission is a flexible switch that can be controlled with precision, and simultaneous emissions of different entangled pairs (such as photon-phonon or photon-magnon pairs) can even emerge but in opposite directions by driving the resonator from different directions. This ability to flexibly manipulate the system allows us to achieve directional entangled multiquanta emitters, and has also potential applications for building hybrid quantum networks and on-chip quantum communications.
Collapse
Affiliation(s)
| | - Hui Jing
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
| | | | - Franco Nori
- Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wakoshi, Saitama 351-0198, Japan
- Center for Quantum Computing, RIKEN, Wakoshi, Saitama 351-0198, Japan
- Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| | | |
Collapse
|
5
|
Zuo Y, Jiao YF, Xu XW, Miranowicz A, Kuang LM, Jing H. Chiral photon blockade in the spinning Kerr resonator. OPTICS EXPRESS 2024; 32:22020-22030. [PMID: 38859542 DOI: 10.1364/oe.524680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/19/2024] [Indexed: 06/12/2024]
Abstract
We propose how to achieve chiral photon blockade by spinning a nonlinear optical resonator. We show that by driving such a device at a fixed direction, completely different quantum effects can emerge for the counter-propagating optical modes, due to the spinning-induced breaking of time-reversal symmetry, which otherwise is unattainable for the same device in the static regime. Also, we find that in comparison with the static case, robust non-classical correlations against random backscattering losses can be achieved for such a quantum chiral system. Our work, extending previous works on the spontaneous breaking of optical chiral symmetry from the classical to purely quantum regimes, can stimulate more efforts towards making and utilizing various chiral quantum effects, including applications for chiral quantum networks or noise-tolerant quantum sensors.
Collapse
|
6
|
Jiang SY, Zou F, Wang Y, Huang JF, Xu XW, Liao JQ. Multiple-photon bundle emission in the n-photon Jaynes-Cummings model. OPTICS EXPRESS 2023; 31:15697-15711. [PMID: 37157664 DOI: 10.1364/oe.488167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We study the multiple-photon bundle emission in the n-photon Jaynes-Cummings model composed of a two-level system coupled to a single-mode optical field via the n-photon exciting process. Here, the two-level system is strongly driven by a near-resonant monochromatic field, and hence the system can work in the Mollow regime, in which a super-Rabi oscillation between the zero-photon state and the n-photon state can take place under proper resonant conditions. We calculate the photon number populations and the standard equal-time high-order correlation functions, and find that the multiple-photon bundle emission can occur in this system. The multiple-photon bundle emission is also confirmed by investigating the quantum trajectories of the state populations and both the standard and generalized time-delay second-order correlation functions for multiple-photon bundle. Our work paves the way towards the study of multiple-photon quantum coherent devices, with potential application in quantum information sciences and technologies.
Collapse
|
7
|
Tang J. Quantum switching between nonclassical correlated single photons and two-photon bundles in a two-photon Jaynes-Cummings model. OPTICS EXPRESS 2023; 31:12471-12486. [PMID: 37157406 DOI: 10.1364/oe.487297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We propose a scheme to realize a two-photon Jaynes-Cummings model for a single atom inside an optical cavity. It is shown that the interplay of a laser detuning and atom (cavity) pump (driven) field gives rise to the strong single photon blockade, two-photon bundles, and photon-induced tunneling. With the cavity driven field, strong photon blockade occurs in the weak coupling regime, and switching between single photon blockade and photon-induced tunneling at two-photon resonance are achievable via increasing the driven strength. By turning on the atom pump field, quantum switching between two-photon bundles and photon-induced tunneling at four-photon resonance are realized. More interestingly, the high-quality quantum switching between single photon blockade, two-photon bundles, and photon-induced tunneling at three-photon resonance is achieved with combining the atom pump and cavity driven fields simultaneously. In contrast to the standard two-level Jaynes-Cummings model, our scheme with generating a two-photon (multi-photon) Jaynes-Cummings model reveals a prominent strategy to engineer a series of special nonclassical quantum states, which may pave the way for investigating basic quantum devices to implement in quantum information processing and quantum networks.
Collapse
|
8
|
Ilin D, Poshakinskiy AV, Poddubny AN, Iorsh I. Frequency Combs with Parity-Protected Cross-Correlations and Entanglement from Dynamically Modulated Qubit Arrays. PHYSICAL REVIEW LETTERS 2023; 130:023601. [PMID: 36706417 DOI: 10.1103/physrevlett.130.023601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/22/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
We develop a general theoretical framework to dynamically engineer quantum correlations and entanglement in the frequency-comb emission from an array of superconducting qubits in a waveguide, rigorously accounting for the temporal modulation of the qubit resonance frequencies. We demonstrate that when the resonance frequencies of the two qubits are periodically modulated with a π phase shift, it is possible to realize simultaneous bunching and antibunching in cross-correlations as well as Bell states of the scattered photons from different sidebands. Our approach, based on the dynamical conversion between the quantum excitations with different parity symmetry, is quite universal. It can be used to control multiparticle correlations in generic dynamically modulated dissipative quantum systems.
Collapse
Affiliation(s)
- Denis Ilin
- Department of Physics and Technology, ITMO University, St. Petersburg, 197101, Russia
- Ioffe Institute, St. Petersburg 194021, Russia
| | | | | | - Ivan Iorsh
- Department of Physics and Technology, ITMO University, St. Petersburg, 197101, Russia
| |
Collapse
|
9
|
Esteban R, Baumberg JJ, Aizpurua J. Molecular Optomechanics Approach to Surface-Enhanced Raman Scattering. Acc Chem Res 2022; 55:1889-1899. [PMID: 35776555 PMCID: PMC9301926 DOI: 10.1021/acs.accounts.1c00759] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ConspectusMolecular vibrations constitute one of the smallest mechanical oscillators available for micro-/nanoengineering. The energy and strength of molecular oscillations depend delicately on the attached specific functional groups as well as on the chemical and physical environments. By exploiting the inelastic interaction of molecules with optical photons, Raman scattering can access the information contained in molecular vibrations. However, the low efficiency of the Raman process typically allows only for characterizing large numbers of molecules. To circumvent this limitation, plasmonic resonances supported by metallic nanostructures and nanocavities can be used because they localize and enhance light at optical frequencies, enabling surface-enhanced Raman scattering (SERS), where the Raman signal is increased by many orders of magnitude. This enhancement enables few- or even single-molecule characterization. The coupling between a single molecular vibration and a plasmonic mode constitutes an example of an optomechanical interaction, analogous to that existing between cavity photons and mechanical vibrations. Optomechanical systems have been intensely studied because of their fundamental interest as well as their application in practical implementations of quantum technology and sensing. In this context, SERS brings cavity optomechanics down to the molecular scale and gives access to larger vibrational frequencies associated with molecular motion, offering new possibilities for novel optomechanical nanodevices.The molecular optomechanics description of SERS is recent, and its implications have only started to be explored. In this Account, we describe the current understanding and progress of this new description of SERS, focusing on our own contributions to the field. We first show that the quantum description of molecular optomechanics is fully consistent with standard classical and semiclassical models often used to describe SERS. Furthermore, we note that the molecular optomechanics framework naturally accounts for a rich variety of nonlinear effects in the SERS signal with increasing laser intensity.Furthermore, the molecular optomechanics framework provides a tool particularly suited to addressing novel effects of fundamental and practical interest in SERS, such as the emergence of collective phenomena involving many molecules or the modification of the effective losses and energy of the molecular vibrations due to the plasmon-vibration interaction. As compared to standard optomechanics, the plasmonic resonance often differs from a single Lorentzian mode and thus requires a more detailed description of its optical response. This quantum description of SERS also allows us to address the statistics of the Raman photons emitted, enabling the interpretation of two-color correlations of the emerging photons, with potential use in the generation of nonclassical states of light. Current SERS experimental implementations in organic molecules and two-dimensional layers suggest the interest in further exploring intense pulsed illumination, situations of strong coupling, resonant-SERS, and atomic-scale field confinement.
Collapse
Affiliation(s)
- Ruben Esteban
- Materials
Physics Center CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
- Donostia
International Physics Center DIPC, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Javier Aizpurua
- Materials
Physics Center CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
- Donostia
International Physics Center DIPC, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
10
|
Verification of Information Thermodynamics in a Trapped Ion System. ENTROPY 2022; 24:e24060813. [PMID: 35741534 PMCID: PMC9222944 DOI: 10.3390/e24060813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023]
Abstract
Information thermodynamics has developed rapidly over past years, and the trapped ions, as a controllable quantum system, have demonstrated feasibility to experimentally verify the theoretical predictions in the information thermodynamics. Here, we address some representative theories of information thermodynamics, such as the quantum Landauer principle, information equality based on the two-point measurement, information-theoretical bound of irreversibility, and speed limit restrained by the entropy production of system, and review their experimental demonstration in the trapped ion system. In these schemes, the typical physical processes, such as the entropy flow, energy transfer, and information flow, build the connection between thermodynamic processes and information variation. We then elucidate the concrete quantum control strategies to simulate these processes by using quantum operators and the decay paths in the trapped-ion system. Based on them, some significantly dynamical processes in the trapped ion system to realize the newly proposed information-thermodynamic models is reviewed. Although only some latest experimental results of information thermodynamics with a single trapped-ion quantum system are reviewed here, we expect to find more exploration in the future with more ions involved in the experimental systems.
Collapse
|
11
|
Yin TS, Jin GR, Chen A. Enhanced Phonon Antibunching in a Circuit Quantum Acoustodynamical System Containing Two Surface Acoustic Wave Resonators. MICROMACHINES 2022; 13:mi13040591. [PMID: 35457897 PMCID: PMC9027357 DOI: 10.3390/mi13040591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/04/2023]
Abstract
We propose a scheme to implement the phonon antibunching and phonon blockade in a circuit quantum acoustodynamical system containing two surface acoustic wave (SAW) resonators coupled to a superconducting qubit. In the cases of driving only one SAW resonator and two SAW resonators, we investigate the phonon statistics by numerically calculating the second-order correlation function. It is found that, when only one SAW cavity is resonantly driven, the phonon antibunching effect can be achieved even when the qubit–phonon coupling strength is smaller than the decay rates of acoustic cavities. This result physically originates from the quantum interference between super-Poissonian statistics and Poissonian statistics of phonons. In particular, when the two SAW resonators are simultaneously driven under the mechanical resonant condition, the phonon antibunching effect can be significantly enhanced, which ultimately allows for the generation of a phonon blockade. Moreover, the obtained phonon blockade can be optimized by regulating the intensity ratio of the two SAW driving fields. In addition, we also discuss in detail the effect of system parameters on the phonon statistics. Our work provides an alternative way for manipulating and controlling the nonclassical effects of SAW phonons. It may inspire the engineering of new SAW-based phonon devices and extend their applications in quantum information processing.
Collapse
|
12
|
Two-Phonon Blockade in Quadratically Coupled Optomechanical Systems. PHOTONICS 2022. [DOI: 10.3390/photonics9020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
We propose a scheme to realize the two-phonon blockade effect in a quadratically coupled optomechanical system. We consider the case that the optical cavity is simultaneously driven by a strong pumping field and a weak driving field. By strongly driving the optical cavity, the nonlinear interaction between the optical mode and the mechanical resonator can be significantly enhanced and an effective second-order nonlinearity between photons and phonons is induced. Based on this effectively strong nonlinearity, the two-phonon blockade effect can be achieved when a weak driving field is applied into the optical cavity. By contrast, we study the case of weakly driving the mechanical resonator. In this case, the single-phonon blockade is generated, while the two-phonon blockade cannot be observed. By numerically calculating the second-order and third-order correlation function, we investigate the statistical characteristics of phonons. In addition, we also study the influence of the thermal noise on the achieved two-phonon blockade effect. Our work provides an alternative approach for implementing multiphonon blockade and has potential applications in quantum information processing.
Collapse
|
13
|
Zhang DW, Bin SW, You C, Hu CS. Enhancing the nonlinearity of optomechanical system via multiple mechanical modes. OPTICS EXPRESS 2022; 30:1314-1326. [PMID: 35209294 DOI: 10.1364/oe.446428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
We theoretically investigate the nonlinear dynamics of an optomechanical system, where the system consists of N identical mechanical oscillators individually coupled to a common cavity field. We find that the optomechanical nonlinearity can be enhanced N times through theoretical analysis and numerical simulation in such a system. This leads to the power thresholds to observe the nonlinear behaviors (bistable, period-doubling, and chaotic dynamics) being reduced to 1/N. In addition, we find that changing the sign (positive or negative) of the coupling strength partly does not affect the threshold of driving power for generating corresponding nonlinear phenomena. Our work may provide a way to engineer optomechanical devices with a lower threshold, which has potential applications in implementing secret information processing and optical sensing.
Collapse
|
14
|
Dong XL, Li PB, Liu T, Nori F. Unconventional Quantum Sound-Matter Interactions in Spin-Optomechanical-Crystal Hybrid Systems. PHYSICAL REVIEW LETTERS 2021; 126:203601. [PMID: 34110200 DOI: 10.1103/physrevlett.126.203601] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
We predict a set of unusual quantum acoustic phenomena resulting from sound-matter interactions in a fully tunable solid-state platform in which an array of solid-state spins in diamond are coupled to quantized acoustic waves in a one-dimensional optomechanical crystal. We find that, by using a spatially varying laser drive that introduces a position-dependent phase in the optomechanical interaction, the mechanical band structure can be tuned in situ, consequently leading to unconventional quantum sound-matter interactions. We show that quasichiral sound-matter interactions can occur, with tunable ranges from bidirectional to quasiunidirectional, when the spins are resonant with the bands. When the solid-state spin frequency lies within the acoustic band gap, we demonstrate the emergence of an exotic polariton bound state that can mediate long-range tunable, odd-neighbor, and complex spin-spin interactions. This work expands the present exploration of quantum phononics and can have wide applications in quantum simulations and quantum information processing.
Collapse
Affiliation(s)
- Xing-Liang Dong
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Peng-Bo Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Tao Liu
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- Department of Physics, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
15
|
Peng ZA, Zhao T, Yang GQ, Huang GM, Li GX. Multifold wave-particle quantum correlations in strongly correlated three-photon emissions from filtered resonance fluorescence. OPTICS EXPRESS 2020; 28:22767-22790. [PMID: 32752533 DOI: 10.1364/oe.396684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
Multifold wave-particle quantum correlations are studied in strongly correlated three-photon emissions from the Mollow triplet via frequency engineering. The nonclassicality and the non-Gaussianity of the filtered field are discussed by correlating intensity signal and correlated balanced homodyne signals. Due to the non-Gaussian fluctuations in the Mollow triplet, new forms of the criterion of nonclassicality for non-Gaussian radiation are proposed by introducing intensity-dual quadrature correlation functions, which contain the information about strongly correlated three-photon emissions of the Mollow triplet. In addition, the time-dependent dynamics of non-Gaussian fluctuations of the filtered field is studied, which displays conspicuous asymmetry. Physically, the asymmetrical evolution of non-Gaussian fluctuations can be attributed to the different transition dynamics of the laser-dressed quantum emitter revealed by the past quantum state and conditional quantum state. Compared with the conventional three-photon intensity correlations that unilaterally reflect the particle properties of radiation, the multifold wave-particle correlation functions we proposed may convey more information about wave-particle duality of radiation, such as the quantum coherence of photon triplet and "which-path" in cascaded photon emissions in atomic systems.
Collapse
|