1
|
Jull EIL, Campos-Villalobos G, Tang Q, Dijkstra M, Tran L. Curvature-directed anchoring and defect structure of colloidal smectic liquid crystals in confinement. PNAS NEXUS 2024; 3:pgae470. [PMID: 39588321 PMCID: PMC11586669 DOI: 10.1093/pnasnexus/pgae470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/04/2024] [Indexed: 11/27/2024]
Abstract
Rod-like objects at high packing fractions can exhibit liquid crystalline ordering. By controlling how the rods align near a boundary, i.e. the anchoring, the defects of a liquid crystal can be selected and tuned. For smectic phases, the rods break rotational and translational symmetry by forming lamellae. Smectic defects thereby include both discontinuities in the rod orientational order (disclinations), as well as in the positional order (dislocations). In this work, we use experiments and simulations to uncover the geometrical conditions necessary for a boundary to set the anchoring of a confined, particle-resolved, smectic liquid crystal. We confine a colloidal smectic within elliptical wells of varying size and shape for a smooth variation of the boundary curvature. We find that the anchoring depends upon the local boundary curvature, with an anchoring transition observed at a critical radius of curvature approximately twice the rod length. Surprisingly, the critical radius of curvature for an anchoring transition holds across a wide range of rod lengths and packing fractions. The anchoring controls the defect structure. By analyzing topological charges and networks composed of maximum density (rod centers) and minimum density (rod ends), we quantify disclinations and dislocations formed with varying confinement geometry. Circular confinements, characterized by planar anchoring, promote disclinations, whereas elliptical confinements, featuring antipodal regions of homeotropic anchoring, promote long-range smectic order and dislocations. Our findings demonstrate how geometrical constraints can control the anchoring and defect structures of liquid crystals-a principle that is applicable from molecular to colloidal length scales.
Collapse
Affiliation(s)
- Ethan I L Jull
- Soft Condensed Matter and Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Gerardo Campos-Villalobos
- Soft Condensed Matter and Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Qianjing Tang
- Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, The Netherlands
| | - Marjolein Dijkstra
- Soft Condensed Matter and Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Lisa Tran
- Soft Condensed Matter and Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
2
|
Kusters GLA, Barella M, van der Schoot P. Preferential ordering of incommensurate-length guest particles in a smectic host. J Chem Phys 2024; 160:084904. [PMID: 38407290 DOI: 10.1063/5.0190802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
Using density functional theory, we study the preferential ordering of rod-like guest particles immersed in a smectic host fluid. Within a model of perfectly aligned rods and assuming that the guest particles do not perturb the smectic host fluid, simple excluded-volume arguments explain that guest particles that are comparable in length to the host particles order in phase with the smectic host density layering, whereas guest particles that are considerably shorter or longer order in antiphase. The corresponding free-energy minima are separated by energetic barriers on the order of the thermal energy kBT, suggesting that guest particles undergo hopping-type diffusion between adjacent smectic layers. Upon introducing a slight orientational mismatch between the guest particles and the perfectly aligned smectic host, an additional, smaller free-energy barrier emerges for a range of intermediate guest-to-host length ratios, which splits the free-energy minimum into two. Guest particles in this range occupy positions intermediate between in-phase ordering and in-antiphase ordering. Finally, we use Kramers' theory to identify slow, fast, and intermediate diffusive regimes for the guest particles as a function of their length. Our model is in qualitative agreement with experiment and simulation and provides an alternative, complementary explanation in terms of a free-energy landscape for the intermediate diffusive regime, which was previously hypothesized to result from temporary caging effects [M. Chiappini, E. Grelet, and M. Dijkstra, Phys. Rev. Lett. 124, 087801 (2020)]. We argue that our simple model of aligned rods captures the salient features of incommensurate-length guest particles in a smectic host if a slight orientational mismatch is introduced.
Collapse
Affiliation(s)
- Guido L A Kusters
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Martijn Barella
- Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Radboud University, Nijmegen, The Netherlands
| | - Paul van der Schoot
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
3
|
García Daza FA, Puertas AM, Cuetos A, Patti A. Insight into the Viscoelasticity of Self-Assembling Smectic Liquid Crystals of Colloidal Rods from Active Microrheology Simulations. J Chem Theory Comput 2024; 20:1579-1589. [PMID: 37390389 PMCID: PMC10902840 DOI: 10.1021/acs.jctc.3c00356] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
The rheology of colloidal suspensions is of utmost importance in a wide variety of interdisciplinary applications in formulation technology, determining equally interesting questions in fundamental science. This is especially intriguing when colloids exhibit a degree of long-range positional or orientational ordering, as in liquid crystals (LCs) of elongated particles. Along with standard methods, microrheology (MR) has emerged in recent years as a tool to assess the mechanical properties of materials at the microscopic level. In particular, by active MR one can infer the viscoelastic response of a soft material from the dynamics of a tracer particle being dragged through it by external forces. Although considerable efforts have been made to study the diffusion of guest particles in LCs, little is known about the combined effect of tracer size and directionality of the dragging force on the system's viscoelastic response. By dynamic Monte Carlo simulations, we apply active MR to investigate the viscoelasticity of self-assembling smectic (Sm) LCs consisting of rodlike particles. In particular, we track the motion of a spherical tracer whose size is varied within a range of values matching the system's characteristic length scales and being dragged by constant forces that are parallel, perpendicular, or at 45° to the nematic director. Our results reveal a uniform value of the effective friction coefficient as probed by the tracer at small and large forces, whereas a nonlinear, force-thinning regime is observed at intermediate forces. However, at relatively weak forces the effective friction is strongly determined by correlations between the tracer size and the structure of the host fluid. Moreover, we also show that external forces forming an angle with the nematic director provide additional details that cannot be simply inferred from the mere analysis of parallel and perpendicular forces. Our results highlight the fundamental interplay between tracer size and force direction in assessing the MR of Sm LC fluids.
Collapse
Affiliation(s)
- Fabián A García Daza
- Department of Physical, Chemical and Natural Systems, Pablo de Olavide University, 41013 Sevilla, Spain
- Department of Chemical Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Antonio M Puertas
- Department of Chemistry and Physics, University of Almeriá, 04120 Almería, Spain
| | - Alejandro Cuetos
- Department of Physical, Chemical and Natural Systems, Pablo de Olavide University, 41013 Sevilla, Spain
| | - Alessandro Patti
- Department of Chemical Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom
- Department of Applied Physics, University of Granada, Avenida Fuente Nueva s/n, 18071 Granada, Spain
| |
Collapse
|
4
|
Zhang X, Dai X, Habib MA, Gao L, Chen W, Wei W, Tang Z, Qi X, Gong X, Jiang L, Yan LT. Unconventionally fast transport through sliding dynamics of rodlike particles in macromolecular networks. Nat Commun 2024; 15:525. [PMID: 38225267 PMCID: PMC10789817 DOI: 10.1038/s41467-024-44765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
Transport of rodlike particles in confinement environments of macromolecular networks plays crucial roles in many important biological processes and technological applications. The relevant understanding has been limited to thin rods with diameter much smaller than network mesh size, although the opposite case, of which the dynamical behaviors and underlying physical mechanisms remain unclear, is ubiquitous. Here, we solve this issue by combining experiments, simulations and theory. We find a nonmonotonic dependence of translational diffusion on rod length, characterized by length commensuration-governed unconventionally fast dynamics which is in striking contrast to the monotonic dependence for thin rods. Our results clarify that such a fast diffusion of thick rods with length of integral multiple of mesh size follows sliding dynamics and demonstrate it to be anomalous yet Brownian. Moreover, good agreement between theoretical analysis and simulations corroborates that the sliding dynamics is an intermediate regime between hopping and Brownian dynamics, and provides a mechanistic interpretation based on the rod-length dependent entropic free energy barrier. The findings yield a principle, that is, length commensuration, for optimal design of rodlike particles with highly efficient transport in confined environments of macromolecular networks, and might enrich the physics of the diffusion dynamics in heterogeneous media.
Collapse
Affiliation(s)
- Xuanyu Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
- Key Laboratory of Advanced Materials (MOE), Tsinghua University, 100084, Beijing, China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
- Key Laboratory of Advanced Materials (MOE), Tsinghua University, 100084, Beijing, China
| | - Md Ahsan Habib
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, 510640, Guangzhou, China
| | - Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
- Key Laboratory of Advanced Materials (MOE), Tsinghua University, 100084, Beijing, China
| | - Wenlong Chen
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
- Key Laboratory of Advanced Materials (MOE), Tsinghua University, 100084, Beijing, China
| | - Wenjie Wei
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
- Key Laboratory of Advanced Materials (MOE), Tsinghua University, 100084, Beijing, China
| | - Zhongqiu Tang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, 510640, Guangzhou, China
| | - Xianyu Qi
- Faculty of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Xiangjun Gong
- Faculty of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Lingxiang Jiang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, 510640, Guangzhou, China.
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China.
- Key Laboratory of Advanced Materials (MOE), Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
5
|
Wensink HH, Grelet E. Elastic response of colloidal smectic liquid crystals: Insights from microscopic theory. Phys Rev E 2023; 107:054604. [PMID: 37329078 DOI: 10.1103/physreve.107.054604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/05/2023] [Indexed: 06/18/2023]
Abstract
Elongated colloidal rods at sufficient packing conditions are known to form stable lamellar or smectic phases. Using a simplified volume-exclusion model, we propose a generic equation of state for hard-rod smectics that is robust against simulation results and is independent of the rod aspect ratio. We then extend our theory by exploring the elastic properties of a hard-rod smectic, including the layer compressibility (B) and bending modulus (K_{1}). By introducing weak backbone flexibility we are able to compare our predictions with experimental results on smectics of filamentous virus rods (fd) and find quantitative agreement between the smectic layer spacing, the out-of-plane fluctuation strength, as well as the smectic penetration length λ=sqrt[K_{1}/B]. We demonstrate that the layer bending modulus is dominated by director splay and depends sensitively on lamellar out-of-plane fluctuations that we account for on the single-rod level. We find that the ratio between the smectic penetration length and the lamellar spacing is about two orders of magnitude smaller than typical values reported for thermotropic smectics. We attribute this to the fact that colloidal smectics are considerably softer in terms of layer compression than their thermotropic counterparts while the cost of layer bending is of comparable magnitude.
Collapse
Affiliation(s)
- H H Wensink
- Laboratoire de Physique des Solides-UMR 8502, CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - E Grelet
- Centre de Recherche Paul Pascal-UMR 5031, CNRS, Université de Bordeaux, 33600 Pessac, France
| |
Collapse
|
6
|
Monderkamp PA, Wittmann R, Te Vrugt M, Voigt A, Wittkowski R, Löwen H. Topological fine structure of smectic grain boundaries and tetratic disclination lines within three-dimensional smectic liquid crystals. Phys Chem Chem Phys 2022; 24:15691-15704. [PMID: 35552573 DOI: 10.1039/d2cp00060a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Observing and characterizing the complex ordering phenomena of liquid crystals subjected to external constraints constitutes an ongoing challenge for chemists and physicists alike. To elucidate the delicate balance appearing when the intrinsic positional order of smectic liquid crystals comes into play, we perform Monte-Carlo simulations of rod-like particles in a range of cavities with a cylindrical symmetry. Based on recent insights into the topology of smectic orientational grain boundaries in two dimensions, we analyze the emerging three-dimensional defect structures from the perspective of tetratic symmetry. Using an appropriate three-dimensional tetratic order parameter constructed from the Steinhardt order parameters, we show that those grain boundaries can be interpreted as a pair of tetratic disclination lines that are located on the edges of the nematic domain boundary. Thereby, we shed light on the fine structure of grain boundaries in three-dimensional confined smectics.
Collapse
Affiliation(s)
- Paul A Monderkamp
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - René Wittmann
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Michael Te Vrugt
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Axel Voigt
- Institut für Wissenschaftliches Rechnen, Technische Universität Dresden, 01062 Dresden, Germany
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
7
|
Monderkamp PA, Wittmann R, Cortes LBG, Aarts DGAL, Smallenburg F, Löwen H. Topology of Orientational Defects in Confined Smectic Liquid Crystals. PHYSICAL REVIEW LETTERS 2021; 127:198001. [PMID: 34797147 DOI: 10.1103/physrevlett.127.198001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/28/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
We propose a general formalism to characterize orientational frustration of smectic liquid crystals in confinement by interpreting the emerging networks of grain boundaries as objects with a topological charge. In a formal idealization, this charge is distributed in pointlike units of quarter-integer magnitude, which we identify with tetratic disclinations located at the end points and nodes. This coexisting nematic and tetratic order is analyzed with the help of extensive Monte Carlo simulations for a broad range of two-dimensional confining geometries as well as colloidal experiments, showing how the observed defect networks can be universally reconstructed from simple building blocks. We further find that the curvature of the confining wall determines the anchoring behavior of grain boundaries, such that the number of nodes in the emerging networks and the location of their end points can be tuned by changing the number and smoothness of corners, respectively.
Collapse
Affiliation(s)
- Paul A Monderkamp
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - René Wittmann
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Louis B G Cortes
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Dirk G A L Aarts
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Frank Smallenburg
- Laboratoire de Physique des Solides, CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
8
|
García Daza FA, Puertas AM, Cuetos A, Patti A. Microrheology of colloidal suspensions via dynamic Monte Carlo simulations. J Colloid Interface Sci 2021; 605:182-192. [PMID: 34325340 DOI: 10.1016/j.jcis.2021.07.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 11/20/2022]
Abstract
Understanding the rheology of colloidal suspensions is crucial in the formulation of a wide selection of industry-relevant products, such as paints, foods and inks. To characterise the viscoelastic behaviour of these soft materials, one can analyse the microscopic dynamics of colloidal tracers diffusing through the host fluid and generating local deformations and stresses. This technique, referred to as microrheology, links the bulk rheology of fluids to the microscopic dynamics at the particle scale. If tracers are subjected to external forces, rather than freely diffusing, it is called active microrheology. Motivated by the impact of microrheology in providing information on local structure in complex systems such as colloidal glasses, active matter or biological systems, we have extended the dynamic Monte Carlo (DMC) technique to investigate active microrheology in colloidal suspensions. The original DMC theoretical framework, able to accurately describe the Brownian dynamics of colloids at equilibrium, is here reconsidered and expanded to describe the effects of an external force pulling a tracer embedded in isotropic colloidal suspensions at different densities. To this end, we studied the dynamics of a spherical tracer dragged by a constant external force through a bath of spherical and rod-like particles of comparable size. We could extract valuable details on its effective friction coefficient, being constant at small and large values of the external force, but otherwise displaying a nonlinear behaviour that indicates the occurrence of a force-thinning regime. Our DMC simulation results are in excellent quantitative agreement with past Langevin dynamics simulations and theoretical works for the bath of spherical colloids. The bath of rod-like particles is studied in the isotropic phase, and displays an example where DMC is more convenient than Brownian or Langevin dynamics, in this case, in dealing with particle rotation.
Collapse
Affiliation(s)
- Fabián A García Daza
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, UK.
| | - Antonio M Puertas
- Department of Chemistry and Physics, University of Almería, 04120 Almería, Spain
| | - Alejandro Cuetos
- Department of Physical, Chemical and Natural Systems, Pablo de Olavide University, 41013 Sevilla, Spain
| | - Alessandro Patti
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
9
|
Lettinga MP, Alvarez L, Korculanin O, Grelet E. When bigger is faster: A self-Van Hove analysis of the enhanced self-diffusion of non-commensurate guest particles in smectics. J Chem Phys 2021; 154:204901. [PMID: 34241175 DOI: 10.1063/5.0049093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We investigate the anomalous dynamics in smectic phases of short host rods where, counter-intuitively, long guest rod-shaped particles diffuse faster than the short host ones due to their precise size mismatch. In addition to the previously reported mean-square displacement, we analyze the time evolution of the self-Van Hove functions G(r, t), as this probability density function uncovers intrinsic heterogeneous dynamics. Through this analysis, we show that the dynamics of the host particles parallel to the director becomes non-Gaussian and therefore heterogeneous after the nematic-to-smectic-A phase transition, even though it exhibits a nearly diffusive behavior according to its mean-squared displacement. In contrast, the non-commensurate guest particles display Gaussian dynamics of the parallel motion, up to the transition to the smectic-B phase. Thus, we show that the self-Van Hove function is a very sensitive probe to account for the instantaneous and heterogeneous dynamics of our system and should be more widely considered as a quantitative and complementary approach of the classical mean-squared displacement characterization in diffusion processes.
Collapse
Affiliation(s)
| | - Laura Alvarez
- Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
| | | | - Eric Grelet
- Centre de Recherche Paul-Pascal, CNRS and Université de Bordeaux, 115 Avenue Schweitzer, F-33600 Pessac, France
| |
Collapse
|
10
|
Wittmann R, Cortes LBG, Löwen H, Aarts DGAL. Particle-resolved topological defects of smectic colloidal liquid crystals in extreme confinement. Nat Commun 2021; 12:623. [PMID: 33504780 PMCID: PMC7840983 DOI: 10.1038/s41467-020-20842-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
Confined samples of liquid crystals are characterized by a variety of topological defects and can be exposed to external constraints such as extreme confinements with nontrivial topology. Here we explore the intrinsic structure of smectic colloidal layers dictated by the interplay between entropy and an imposed external topology. Considering an annular confinement as a basic example, a plethora of competing states is found with nontrivial defect structures ranging from laminar states to multiple smectic domains and arrays of edge dislocations, which we refer to as Shubnikov states in formal analogy to the characteristic of type-II superconductors. Our particle-resolved results, gained by a combination of real-space microscopy of thermal colloidal rods and fundamental-measure-based density functional theory of hard anisotropic bodies, agree on a quantitative level.
Collapse
Affiliation(s)
- René Wittmann
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| | - Louis B G Cortes
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| | - Dirk G A L Aarts
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Chiappini M, Patti A, Dijkstra M. Helicoidal dynamics of biaxial curved rods in twist-bend nematic phases unveiled by unsupervised machine learning techniques. Phys Rev E 2020; 102:040601. [PMID: 33212681 DOI: 10.1103/physreve.102.040601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Uniaxial rods in a nematic phase diffuse preferentially in the direction parallel to the nematic director n[over ̂]. The nematic director field n[over ̂](r) of a chiral twist-bend nematic (N_{TB}) phase of achiral banana-shaped particles, recently discovered experimentally, displays a heliconical twist of given handedness and periodicity. Using simulations, we investigate the long-time macroscopic diffusion in N_{TB} phases, and find that the predilection of curved rods to diffuse in the direction of the twisting n[over ̂](r) yields a fascinating chiral dynamics along helices, even though achiral curved rods display Brownian motion with a nontrivial rototranslational coupling. We devise a machine learning protocol to characterize the helicoidal particle trajectories, finding that their pitch and radius are determined by the pitch and conical angle of the N_{TB} phase thereby connecting its structural and dynamical properties.
Collapse
Affiliation(s)
- Massimiliano Chiappini
- Department of Physics, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht 3584 CC, The Netherlands
| | - Alessandro Patti
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Marjolein Dijkstra
- Department of Physics, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht 3584 CC, The Netherlands
| |
Collapse
|
12
|
García Daza FA, Cuetos A, Patti A. Dynamic Monte Carlo simulations of inhomogeneous colloidal suspensions. Phys Rev E 2020; 102:013302. [PMID: 32795071 DOI: 10.1103/physreve.102.013302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
The dynamic Monte Carlo (DMC) method is an established molecular simulation technique for the analysis of the dynamics in colloidal suspensions. An excellent alternative to Brownian dynamics or molecular dynamics simulation, DMC is applicable to systems of spherical and/or anisotropic particles and to equilibrium or out-of-equilibrium processes. In this work, we present a theoretical and methodological framework to extend DMC to the study of heterogeneous systems, where the presence of an interface between coexisting phases introduces an additional element of complexity in determining the dynamic properties. In particular, we simulate a Lennard-Jones fluid at the liquid-vapor equilibrium and determine the diffusion coefficients in the bulk of each phase and across the interface. To test the validity of our DMC results, we also perform Brownian Dynamics simulations and unveil an excellent quantitative agreement between the two simulation techniques.
Collapse
Affiliation(s)
- Fabián A García Daza
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Alejandro Cuetos
- Department of Physical, Chemical and Natural Systems, Pablo de Olavide University, 41013 Sevilla, Spain
| | - Alessandro Patti
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|