1
|
Yu X, Peng Z, Xu L, Shi W, Li Z, Meng X, He X, Wang Z, Duan S, Tong L, Huang X, Miao X, Hu W, Ye L. Manipulating 2D Materials through Strain Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402561. [PMID: 38818684 DOI: 10.1002/smll.202402561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/15/2024] [Indexed: 06/01/2024]
Abstract
This review explores the growing interest in 2D layered materials, such as graphene, h-BN, transition metal dichalcogenides (TMDs), and black phosphorus (BP), with a specific focus on recent advances in strain engineering. Both experimental and theoretical results are delved into, highlighting the potential of strain to modulate physical properties, thereby enhancing device performance. Various strain engineering methods are summarized, and the impact of strain on the electrical, optical, magnetic, thermal, and valleytronic properties of 2D materials is thoroughly examined. Finally, the review concludes by addressing potential applications and challenges in utilizing strain engineering for functional devices, offering valuable insights for further research and applications in optoelectronics, thermionics, and spintronics.
Collapse
Affiliation(s)
- Xiangxiang Yu
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- School of Physic and Optoelectronic Engineering, Yangtze University, Jingzhou, Hubei, 434023, China
| | - Zhuiri Peng
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Langlang Xu
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Wenhao Shi
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zheng Li
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiaohan Meng
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiao He
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zhen Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Shikun Duan
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Lei Tong
- Department of Electronic Engineering, Materials Science and Technology Research Center, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Xinyu Huang
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiangshui Miao
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Hubei Yangtze Memory Laboratories, Wuhan, 430205, China
| | - Weida Hu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Lei Ye
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Hubei Yangtze Memory Laboratories, Wuhan, 430205, China
| |
Collapse
|
2
|
Montanaro A, Piccinini G, Mišeikis V, Sorianello V, Giambra MA, Soresi S, Giorgi L, D'Errico A, Watanabe K, Taniguchi T, Pezzini S, Coletti C, Romagnoli M. Sub-THz wireless transmission based on graphene-integrated optoelectronic mixer. Nat Commun 2023; 14:6471. [PMID: 37833246 PMCID: PMC10575943 DOI: 10.1038/s41467-023-42194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Optoelectronics is a valuable solution to scale up wireless links frequency to sub-THz in the next generation antenna systems and networks. Here, we propose a low-power consumption, small footprint building block for 6 G and 5 G new radio wireless transmission allowing broadband capacity (e.g., 10-100 Gb/s per link and beyond). We demonstrate a wireless datalink based on graphene, reaching setup limited sub-THz carrier frequency and multi-Gbit/s data rate. Our device consists of a graphene-based integrated optoelectronic mixer capable of mixing an optically generated reference oscillator approaching 100 GHz, with a baseband electrical signal. We report >96 GHz optoelectronic bandwidth and -44 dB upconversion efficiency with a footprint significantly smaller than those of state-of-the-art photonic transmitters (i.e., <0.1 mm2). These results are enabled by an integrated-photonic technology based on wafer-scale high-mobility graphene and pave the way towards the development of optoelectronics-based arrayed-antennas for millimeter-wave technology.
Collapse
Affiliation(s)
- Alberto Montanaro
- Photonic Networks and Technologies Lab - CNIT, Via G. Moruzzi,1, 56124, Pisa, Italy.
- TeCIP Institute, Scuola Superiore Sant'Anna, via G. Moruzzi 1, 56124, Pisa, Italy.
| | - Giulia Piccinini
- NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Vaidotas Mišeikis
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127, Pisa, Italy
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Vito Sorianello
- Photonic Networks and Technologies Lab - CNIT, Via G. Moruzzi,1, 56124, Pisa, Italy
| | - Marco A Giambra
- Inphotec, CamGraPhIC srl, via G. Moruzzi 1, 56124, Pisa, Italy
| | - Stefano Soresi
- Inphotec, CamGraPhIC srl, via G. Moruzzi 1, 56124, Pisa, Italy
| | - Luca Giorgi
- Ericsson Research, via G. Moruzzi 1, 56124, Pisa, Italy
| | | | - K Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - T Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Sergio Pezzini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, P.zza S. Silvestro 12, 56127, Pisa, Italy
| | - Camilla Coletti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127, Pisa, Italy
- Graphene Labs, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Marco Romagnoli
- Photonic Networks and Technologies Lab - CNIT, Via G. Moruzzi,1, 56124, Pisa, Italy
| |
Collapse
|
3
|
Phonon-mediated room-temperature quantum Hall transport in graphene. Nat Commun 2023; 14:318. [PMID: 36658139 PMCID: PMC9852447 DOI: 10.1038/s41467-023-35986-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
The quantum Hall (QH) effect in two-dimensional electron systems (2DESs) is conventionally observed at liquid-helium temperatures, where lattice vibrations are strongly suppressed and bulk carrier scattering is dominated by disorder. However, due to large Landau level (LL) separation (~2000 K at B = 30 T), graphene can support the QH effect up to room temperature (RT), concomitant with a non-negligible population of acoustic phonons with a wave-vector commensurate to the inverse electronic magnetic length. Here, we demonstrate that graphene encapsulated in hexagonal boron nitride (hBN) realizes a novel transport regime, where dissipation in the QH phase is governed predominantly by electron-phonon scattering. Investigating thermally-activated transport at filling factor 2 up to RT in an ensemble of back-gated devices, we show that the high B-field behaviour correlates with their zero B-field transport mobility. By this means, we extend the well-accepted notion of phonon-limited resistivity in ultra-clean graphene to a hitherto unexplored high-field realm.
Collapse
|
4
|
Li Z, Nie G, Chen Z, Li D, Tan D, Xu H, Liu Y. Polarization-sensitive switchable display through critical coupling between graphene and a quasi-BIC. Phys Chem Chem Phys 2022; 24:29594-29600. [PMID: 36448605 DOI: 10.1039/d2cp05172a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Enhanced light-matter interaction of a local field is of prime importance in optics as it can improve the performance of nanophotonic devices. Such enhancement can be achieved by utilizing the optical bound states in the continuum (BICs). In this study, a dielectric metasurface is proposed that could enhance the light-matter interactions in graphene. A symmetry-protected BIC was observed in such a metasurface, which could transform into a quasi-BIC with a high quality (Q-) factor when the in-plane symmetry is broken. As the graphene monolayer was introduced into the system, its absorption was enhanced by the quasi-BIC resonance. By optimizing the graphene Fermi energy and the asymmetry parameter of the metasurface to satisfy the critical-coupling condition, a tunable absorber could be achieved. The absorbing intensity could be efficiently modulated by varying the polarization direction of the incident light, the maximum difference of which was up to 95.4%. Also, further investigation showed that such a feature indicates potential application in digital switches and image displays, which could be switched by incident polarization only, and therefore without dependence on an additional structural change.
Collapse
Affiliation(s)
- Zonglin Li
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China. .,Hunan Provincial Key Laboratory of Intelligent Sensors and New Sensor Materials, Xiangtan, 411201, Hunan, China
| | - Guozheng Nie
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China. .,Hunan Provincial Key Laboratory of Intelligent Sensors and New Sensor Materials, Xiangtan, 411201, Hunan, China.,School of Microelectronics and Physics, Hunan University of Technology and Business, Changsha, 410205, China
| | - Zhiquan Chen
- School of Microelectronics and Physics, Hunan University of Technology and Business, Changsha, 410205, China
| | - Deqiong Li
- College of Science, Hunan University of Technology and Business, Changsha, 410205, China
| | - Diwen Tan
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China. .,Hunan Provincial Key Laboratory of Intelligent Sensors and New Sensor Materials, Xiangtan, 411201, Hunan, China
| | - Hui Xu
- School of Microelectronics and Physics, Hunan University of Technology and Business, Changsha, 410205, China
| | - Yunxin Liu
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China. .,Hunan Provincial Key Laboratory of Intelligent Sensors and New Sensor Materials, Xiangtan, 411201, Hunan, China.,School of Microelectronics and Physics, Hunan University of Technology and Business, Changsha, 410205, China
| |
Collapse
|
5
|
Chen S, Son J, Huang S, Watanabe K, Taniguchi T, Bashir R, van der Zande AM, King WP. Tip-Based Cleaning and Smoothing Improves Performance in Monolayer MoS 2 Devices. ACS OMEGA 2021; 6:4013-4021. [PMID: 33585777 PMCID: PMC7876835 DOI: 10.1021/acsomega.0c05934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/20/2021] [Indexed: 06/07/2023]
Abstract
Two-dimensional (2D) materials and heterostructures are promising candidates for nanoelectronics. However, the quality of material interfaces often limits the performance of electronic devices made from atomically thick 2D materials and heterostructures. Atomic force microscopy (AFM) tip-based cleaning is a reliable technique to remove interface contaminants and flatten heterostructures. Here, we demonstrate AFM tip-based cleaning applied to hBN-encapsulated monolayer MoS2 transistors, which results in electrical performance improvements of the devices. To investigate the impact of cleaning on device performance, we compared the characteristics of as-transferred heterostructures and transistors before and after tip-based cleaning using photoluminescence (PL) and electronic measurements. The PL linewidth of monolayer MoS2 decreased from 84 meV before cleaning to 71 meV after cleaning. The extrinsic mobility of monolayer MoS2 field-effect transistors increased from 21 cm2/Vs before cleaning to 38 cm2/Vs after cleaning. Using the results from AFM topography, photoluminescence, and back-gated field-effect measurements, we infer that tip-based cleaning enhances the mobility of hBN-encapsulated monolayer MoS2 by reducing interface disorder. Finally, we fabricate a MoS2 field-effect transistor (FET) from a tip-cleaned heterostructure and achieved a device mobility of 73 cm2/Vs. The results of this work could be used to improve the electrical performance of heterostructure devices and other types of mechanically assembled van der Waals heterostructures.
Collapse
Affiliation(s)
- Sihan Chen
- Department
of Mechanical Science and Engineering, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jangyup Son
- Department
of Mechanical Science and Engineering, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Siyuan Huang
- Department
of Mechanical Science and Engineering, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kenji Watanabe
- National
Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Takashi Taniguchi
- National
Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
| | - Rashid Bashir
- Department
of Mechanical Science and Engineering, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department
of Bioengineering, University of Illinois
at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Arend M. van der Zande
- Department
of Mechanical Science and Engineering, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - William P. King
- Department
of Mechanical Science and Engineering, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Caneva S, Hermans M, Lee M, García-Fuente A, Watanabe K, Taniguchi T, Dekker C, Ferrer J, van der Zant HSJ, Gehring P. A Mechanically Tunable Quantum Dot in a Graphene Break Junction. NANO LETTERS 2020; 20:4924-4931. [PMID: 32551676 PMCID: PMC7349654 DOI: 10.1021/acs.nanolett.0c00984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Graphene quantum dots (QDs) are intensively studied as platforms for the next generation of quantum electronic devices. Fine tuning of the transport properties in monolayer graphene QDs, in particular with respect to the independent modulation of the tunnel barrier transparencies, remains challenging and is typically addressed using electrostatic gating. We investigate charge transport in back-gated graphene mechanical break junctions and reveal Coulomb blockade physics characteristic of a single, high-quality QD when a nanogap is opened in a graphene constriction. By mechanically controlling the distance across the newly formed graphene nanogap, we achieve reversible tunability of the tunnel coupling to the drain electrode by 5 orders of magnitude, while keeping the source-QD tunnel coupling constant. The break junction device can therefore become a powerful platform to study the physical parameters that are crucial to the development of future graphene-based devices, including energy converters and quantum calorimeters.
Collapse
Affiliation(s)
- Sabina Caneva
- Kavli
Institute of Nanotechnology, Lorentzweg 1, 2628
CJ Delft, The Netherlands
| | - Matthijs Hermans
- Kavli
Institute of Nanotechnology, Lorentzweg 1, 2628
CJ Delft, The Netherlands
| | - Martin Lee
- Kavli
Institute of Nanotechnology, Lorentzweg 1, 2628
CJ Delft, The Netherlands
| | - Amador García-Fuente
- Departamento
de Física, Universidad de Oviedo, 33007 Oviedo, Spain
- Centro
de Investigación en Nanomateriales y Nanotecnología, Universidad de Oviedo − CSIC, 33940 El Entrego, Spain
| | - Kenji Watanabe
- National
Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- National
Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Cees Dekker
- Kavli
Institute of Nanotechnology, Lorentzweg 1, 2628
CJ Delft, The Netherlands
| | - Jaime Ferrer
- Departamento
de Física, Universidad de Oviedo, 33007 Oviedo, Spain
- Centro
de Investigación en Nanomateriales y Nanotecnología, Universidad de Oviedo − CSIC, 33940 El Entrego, Spain
| | | | - Pascal Gehring
- Kavli
Institute of Nanotechnology, Lorentzweg 1, 2628
CJ Delft, The Netherlands
| |
Collapse
|