1
|
Bayram AG, Biancofiore L, Löwen H. Dynamics of an active chiral polymer in shear flow. J Chem Phys 2025; 162:174903. [PMID: 40314283 DOI: 10.1063/5.0268723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/04/2025] [Indexed: 05/03/2025] Open
Abstract
We explore the complex formation of an active flexible polymer chain in linear shear flow by using monomer-resolved Brownian dynamics simulations in two spatial dimensions. The chiral head monomer is active and circling, while all other monomers are passive, following both the motion of the head polymer and the shear flow. By the combination of activity, chirality, and shear rate, a wealth of different states are found, including the formation of a linear/complex folding and a spiraling state with both head-in and head-out morphologies. As the vorticity of the applied shear competes with the circling sense of the head, the chirality of the whole complex can be tuned by activity. Our results are relevant to characterize the response of living and artificial chiral active polymer chains to complex flow fields.
Collapse
Affiliation(s)
- A Gülce Bayram
- Department of Mechanical Engineering, Bilkent University, Çankaya, 06800 Ankara, Turkey
| | - Luca Biancofiore
- Department of Mechanical Engineering, Bilkent University, Çankaya, 06800 Ankara, Turkey
- Department of Industrial Engineering Information and Economics, University of L'Aquila, Piazzale Ernesto Pontieri Monteluco di Roio, L'Aquila 67100, Italy
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Chase DL, Peleg O. The Physics of Sensing and Decision-Making by Animal Groups. Annu Rev Biophys 2025; 54:329-351. [PMID: 40327442 DOI: 10.1146/annurev-biophys-061824-110733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
To ensure survival and reproduction, individual animals navigating the world must regularly sense their surroundings and use this information for important decision-making. The same is true for animals living in groups, where the roles of sensing, information propagation, and decision-making are distributed on the basis of individual knowledge, spatial position within the group, and more. This review highlights key examples of temporal and spatiotemporal dynamics in animal group decision-making, emphasizing strong connections between mathematical models and experimental observations. We start with models of temporal dynamics, such as reaching consensus and the time dynamics of excitation-inhibition networks. For spatiotemporal dynamics in sparse groups, we explore the propagation of information and synchronization of movement in animal groups with models of self-propelled particles, where interactions are typically parameterized by length and timescales. In dense groups, we examine crowding effects using a soft condensed matter approach, where interactions are parameterized by physical potentials and forces. While focusing on invertebrates, we also demonstrate the applicability of these results to a wide range of organisms, aiming to provide an overview of group behavior dynamics and identify new areas for exploration.
Collapse
Affiliation(s)
- Danielle L Chase
- BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA; ,
| | - Orit Peleg
- BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA; ,
- Department of Computer Science, Department of Physics, Department of Applied Math, and Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
3
|
Janzen G, Miranda JP, Martín-Roca J, Malgaretti P, Locatelli E, Valeriani C, Fernandez DAM. Active polymer behavior in two dimensions: A comparative analysis of tangential and push-pull models. J Chem Phys 2025; 162:114905. [PMID: 40099738 DOI: 10.1063/5.0243432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
In this work, we compare the structural and dynamic behavior of active filaments in two dimensions using tangential and push-pull models, including a variant with passive end monomers, to bridge the two frameworks. These models serve as valuable frameworks for understanding self-organization in biological polymers and synthetic materials. At low activity, all models exhibit similar behavior; as activity increases, subtle differences emerge in intermediate regimes, but at high activity, their behaviors converge. Adjusting for differences in mean active force reveals nearly identical behavior across models, even across varying filament configurations and bending rigidities. Our results highlight the importance of force definitions in active polymer simulations and provide insights into phase transitions across varying filament configurations.
Collapse
Affiliation(s)
- Giulia Janzen
- Department of Theoretical Physics, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juan Pablo Miranda
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain
- GISC - Grupo Interdisciplinar de Sistemas Complejos, 28040 Madrid, Spain
| | - J Martín-Roca
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain
- GISC - Grupo Interdisciplinar de Sistemas Complejos, 28040 Madrid, Spain
| | - Paolo Malgaretti
- Helmholtz Institute Erlangen-Nurnberg for Renewable Energy (IET-2), Forschungszentrum Jülich, Cauerstr. 1, 91058 Erlangen, Germany
| | - Emanuele Locatelli
- Department of Physics and Astronomy, University of Padova, 35131 Padova, Italy
- INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy
| | - Chantal Valeriani
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain
- GISC - Grupo Interdisciplinar de Sistemas Complejos, 28040 Madrid, Spain
| | - D A Matoz Fernandez
- Department of Theoretical Physics, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
4
|
Hu Y, Quan H, Shen P, Chen X, Pei Y, Huang Z. Self-Assembly Systems Based on Betaine-Type Hydrophobic Association Polymer Used in Acid Stimulation: Effects of Surfactant and Salt Ion. ACS OMEGA 2024; 9:48670-48680. [PMID: 39676981 PMCID: PMC11635469 DOI: 10.1021/acsomega.4c07784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/11/2024] [Accepted: 10/24/2024] [Indexed: 12/17/2024]
Abstract
Hydrophobic association polymers containing various functional groups have a great deal of application potential as a self-thickening agent in carbonate acidification, while the improvement of their viscosification ability under high temperature conditions remains a significant challenge. A kind of betaine-type hydrophobic association polymer (PASD) intended for use as an acid thickener was synthesized through aqueous solution polymerization with sulfobetaine and a soluble hydrophobic monomer. The structure of PASD was characterized by FT-IR and 1H NMR. It is found that during the acid-rock reaction, the physical cross-linking between PASD and cationic surfactants (STAC) occurs through noncovalent bonding forces such as micellar interaction and electrostatic interaction, forming a self-assembly acid. The optimum conditions for the construction of the self-assembly acid and its viscosification properties, rheological properties, temperature, and salt resistance were evaluated by a six-speed rotating viscometer and a HAAK MARSIII rheometer. The results suggest that the main source of the viscosity rise of the self-assembly acid is the CaCl2 produced during the acid-rock reaction. As the acid-rock reaction progresses, the hydrodynamic radius of the self-assembly acid increases, and tighter aggregation structures form. The viscosity of the self-assembly spent acid still keeps in 140 mPa·s under 140 °C shearing for 1 h at 170 s-1, which indicates that the self-assembly acid has excellent viscosification ability and temperature resistance. Compared to PASD acid, the self-assembly acid can be used at a wider range of temperatures, and its research and development have given rise to novel ideas for the use of HAWPs as an acid thickener.
Collapse
Affiliation(s)
- Yuling Hu
- College
of Chemistry and Chemical Engineering, Southwest
Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil
& Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan 610500, P. R. China
| | - Hongping Quan
- College
of Chemistry and Chemical Engineering, Southwest
Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil
& Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan 610500, P. R. China
| | - Peng Shen
- SINOPEC
Zhongyuan Petroleum Engineering Design Co., Ltd., Zhengzhou, Henan 450000, P. R. China
| | - Xuewen Chen
- College
of Chemistry and Chemical Engineering, Southwest
Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil
& Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan 610500, P. R. China
| | - Yingze Pei
- College
of Chemistry and Chemical Engineering, Southwest
Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil
& Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan 610500, P. R. China
| | - Zhiyu Huang
- College
of Chemistry and Chemical Engineering, Southwest
Petroleum University, Chengdu, Sichuan 610500, P. R. China
- Oil
& Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, Sichuan 610500, P. R. China
| |
Collapse
|
5
|
Meng Z, Yan H, Wang Y. Granular metamaterials with dynamic bond reconfiguration. SCIENCE ADVANCES 2024; 10:eadq7933. [PMID: 39630910 PMCID: PMC11616718 DOI: 10.1126/sciadv.adq7933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
Biological materials dynamically reconfigure their underlying structures in response to stimuli, achieving adaptability and multifunctionality. Conversely, mechanical metamaterials have fixed interunit connections that restrict adaptability and reconfiguration. This study introduces granular metamaterials composed of discrete bimaterial structured particles that transition between assembled and unassembled states through mechanical compression and thermal stimuli. These materials enable dynamic bond reconfiguration, allowing reversible bond breaking and formation, similar to natural systems. Leveraging their discrete nature, these materials can adaptively reconfigure their shape and respond dynamically to varying conditions. Our investigations reveal that these granular metamaterials can substantially alter their mechanical properties, like compression, shearing, and bending, offering tunable mechanical characteristics across different states. Furthermore, they exhibit collective behaviors like directional movement, object capture, transportation, and gap crossing, showcasing their potential for reprogrammable functionalities. This work highlights the dynamic reconfigurability and robust adaptability of granular metamaterials, expanding their potential in responsive architecture and autonomous robotics.
Collapse
Affiliation(s)
- Zhiqiang Meng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Hujie Yan
- Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yifan Wang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
6
|
Ubertini MA, Locatelli E, Rosa A. Universal Time and Length Scales of Polar Active Polymer Melts. ACS Macro Lett 2024; 13:1204-1210. [PMID: 39213658 DOI: 10.1021/acsmacrolett.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We present an in-depth multiscale analysis of the conformations and dynamics of polar active polymers, comparing very dilute and very dense conditions. We unveil characteristic length and time scales, common to both dilute and dense systems, that recapitulate the conformational and dynamical properties of these active polymers upon varying both the polymer size and the strength of the activity. Specifically, we find that a correlation (or looping) length characterizes the polymer conformations and the monomer dynamics. Instead, the dynamics of the center of mass can be fully characterized by the end-to-end mean-square distance and by the associated relaxation time. As such, we show that the dynamics of individual chains in melts of polar active polymers is not controlled by entanglements, but only by the strength of the self-propulsion.
Collapse
Affiliation(s)
- Mattia Alberto Ubertini
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Emanuele Locatelli
- Department of Physics and Astronomy, University of Padova, Via Marzolo 8, I-35131 Padova, Italy
- INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy
| | - Angelo Rosa
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
7
|
Muzzeddu PL, Gambassi A, Sommer JU, Sharma A. Migration and Separation of Polymers in Nonuniform Active Baths. PHYSICAL REVIEW LETTERS 2024; 133:118102. [PMID: 39331988 DOI: 10.1103/physrevlett.133.118102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/10/2024] [Accepted: 08/07/2024] [Indexed: 09/29/2024]
Abstract
Polymerlike structures are ubiquitous in nature and synthetic materials. Their configurational and migration properties are often affected by crowded environments leading to nonthermal fluctuations. Here, we study an ideal Rouse chain in contact with a nonhomogeneous active bath, characterized by the presence of active self-propelled agents which exert time-correlated forces on the chain. By means of a coarse-graining procedure, we derive an effective evolution for the center of mass of the chain and show its tendency to migrate toward and preferentially localize in regions of high and low bath activity depending on the model parameters. In particular, we demonstrate that an active bath with nonuniform activity can be used to separate efficiently polymeric species with different lengths and/or connectivity.
Collapse
|
8
|
Janzen G, Matoz-Fernandez DA. Density and inertia effects on two-dimensional active semiflexible filament suspensions. SOFT MATTER 2024; 20:6618-6626. [PMID: 39108173 DOI: 10.1039/d4sm00572d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
We examine the influence of density on the transition between chain and spiral structures in planar assemblies of active semiflexible filaments, utilizing detailed numerical simulations. We focus on how increased density, and higher Péclet numbers, affect the activity-induced transition spiral state in a semiflexible, self-avoiding active chain. Our findings show that increasing the density causes the spiral state to break up, reverting to a motile chain-like shape. This results in a density-dependent reentrant phase transition from spirals back to open chains. We attribute this phenomenon to an inertial effect observed at the single polymer level, where increased persistence length due to inertia has been shown in recent three-dimensional studies to cause polymers to open up. Our two-dimensional simulations further reveal that a reduction in the damping coefficient leads to partial unwinding of the spirals, forming longer arms. In suspension, interactions among these extended arms can trigger a complete unwinding of the spirals, driven by the combined effects of density and inertia.
Collapse
Affiliation(s)
- Giulia Janzen
- Department of Theoretical Physics, Complutense University of Madrid, 28040 Madrid, Spain.
| | - D A Matoz-Fernandez
- Department of Theoretical Physics, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
9
|
Xu TL, Qin CR, Tang B, Gao JC, Zhou J, Chen K, Zhang TH, Tian WD. Constrained motion of self-propelling eccentric disks linked by a spring. J Chem Phys 2024; 161:064905. [PMID: 39140446 DOI: 10.1063/5.0217158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024] Open
Abstract
It has been supposed that the interplay of elasticity and activity plays a key role in triggering the non-equilibrium behaviors in biological systems. However, the experimental model system is missing to investigate the spatiotemporally dynamical phenomena. Here, a model system of an active chain, where active eccentric-disks are linked by a spring, is designed to study the interplay of activity, elasticity, and friction. Individual active chain exhibits longitudinal and transverse motions; however, it starts to self-rotate when pinning one end and self-beat when clamping one end. In addition, our eccentric-disk model can qualitatively reproduce such behaviors and explain the unusual self-rotation of the first disk around its geometric center. Furthermore, the structure and dynamics of long chains were studied via simulations without steric interactions. It was found that a hairpin conformation emerges in free motion, while in the constrained motions, the rotational and beating frequencies scale with the flexure number (the ratio of self-propelling force to bending rigidity), χ, as ∼(χ)4/3. Scaling analysis suggests that it results from the balance between activity and energy dissipation. Our findings show that topological constraints play a vital role in non-equilibrium synergy behaviors.
Collapse
Affiliation(s)
- Tian-Liang Xu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | - Chao-Ran Qin
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | - Bin Tang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | - Jin-Cheng Gao
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | - Jiankang Zhou
- School of Optoelectronic Science and Engineering, Soochow University, Suzhou 215006, China
| | - Kang Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | - Tian Hui Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | - Wen-de Tian
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| |
Collapse
|
10
|
Wagner RJ, Lamont SC, White ZT, Vernerey FJ. Catch bond kinetics are instrumental to cohesion of fire ant rafts under load. Proc Natl Acad Sci U S A 2024; 121:e2314772121. [PMID: 38621122 PMCID: PMC11047079 DOI: 10.1073/pnas.2314772121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/18/2024] [Indexed: 04/17/2024] Open
Abstract
Dynamic networks composed of constituents that break and reform bonds reversibly are ubiquitous in nature owing to their modular architectures that enable functions like energy dissipation, self-healing, and even activity. While bond breaking depends only on the current configuration of attachment in these networks, reattachment depends also on the proximity of constituents. Therefore, dynamic networks composed of macroscale constituents (not benefited by the secondary interactions cohering analogous networks composed of molecular-scale constituents) must rely on primary bonds for cohesion and self-repair. Toward understanding how such macroscale networks might adaptively achieve this, we explore the uniaxial tensile response of 2D rafts composed of interlinked fire ants (S. invicta). Through experiments and discrete numerical modeling, we find that ant rafts adaptively stabilize their bonded ant-to-ant interactions in response to tensile strains, indicating catch bond dynamics. Consequently, low-strain rates that should theoretically induce creep mechanics of these rafts instead induce elastic-like response. Our results suggest that this force-stabilization delays dissolution of the rafts and improves toughness. Nevertheless, above 35[Formula: see text] strain low cohesion and stress localization cause nucleation and growth of voids whose coalescence patterns result from force-stabilization. These voids mitigate structural repair until initial raft densities are restored and ants can reconnect across defects. However mechanical recovery of ant rafts during cyclic loading suggests that-even upon reinstatement of initial densities-ants exhibit slower repair kinetics if they were recently loaded at faster strain rates. These results exemplify fire ants' status as active agents capable of memory-driven, stimuli-response for potential inspiration of adaptive structural materials.
Collapse
Affiliation(s)
- Robert J. Wagner
- Sibley School of Mechanical & Aerospace Engineering, Cornell University, Ithaca, NY
| | - Samuel C. Lamont
- Paul M. Rady School of Mechanical Engineering, University of Colorado, Boulder, CO
| | - Zachary T. White
- Paul M. Rady School of Mechanical Engineering, University of Colorado, Boulder, CO
| | - Franck J. Vernerey
- Paul M. Rady School of Mechanical Engineering, University of Colorado, Boulder, CO
| |
Collapse
|
11
|
Zhu G, Gao L, Sun Y, Wei W, Yan LT. Non-equilibrium structural and dynamic behaviors of active polymers in complex and crowded environments. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:054601. [PMID: 38608453 DOI: 10.1088/1361-6633/ad3e11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
Active matter systems, which convert internal chemical energy or energy from the environment into directed motion, are ubiquitous in nature and exhibit a range of emerging non-equilibrium behaviors. However, most of the current works on active matter have been devoted to particles, and the study of active polymers has only recently come into the spotlight due to their prevalence within living organisms. The intricate interplay between activity and conformational degrees of freedom gives rise to novel structural and dynamical behaviors of active polymers. Research in active polymers remarkably broadens diverse concepts of polymer physics, such as molecular architecture, dynamics, scaling and so on, which is of significant importance for the development of new polymer materials with unique performance. Furthermore, active polymers are often found in strongly interacting and crowded systems and in complex environments, so that the understanding of this behavior is essential for future developments of novel polymer-based biomaterials. This review thereby focuses on the study of active polymers in complex and crowded environments, and aims to provide insights into the fundamental physics underlying the adaptive and collective behaviors far from equilibrium, as well as the open challenges that the field is currently facing.
Collapse
Affiliation(s)
- Guolong Zhu
- School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yihang Sun
- School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Wenjie Wei
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
12
|
Miranda JP, Locatelli E, Valeriani C. Self-Organized States from Solutions of Active Ring Polymers in Bulk and under Confinement. J Chem Theory Comput 2024; 20:1636-1645. [PMID: 38153343 DOI: 10.1021/acs.jctc.3c00818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
In the present work, we study, by means of numerical simulations, the structural and dynamical behavior of a suspension of active ring polymers in bulk and under lateral confinement. At high activity, when changing the distance between the confining planes and the polymers' density, we identify the emergence of a self-organized dynamical state, characterized by the coexistence of slowly diffusing clusters of rotating disks and faster rings moving in between them. We further assess that self-organization is robust in a range of polymer sizes, and we identify a critical value of the activity, necessary to trigger cluster formation. This system has distinctive features resembling at the same time polymers, liquid crystals, and active systems, where the interplay between activity, topology, and confinement leads to a spontaneous segregation in an initially one-component solution.
Collapse
Affiliation(s)
- Juan Pablo Miranda
- Dep. Est. de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain
- GISC - Grupo Interdisciplinar de Sistemas Complejos, 28040 Madrid, Spain
| | - Emanuele Locatelli
- Department of Physics and Astronomy, University of Padova, 35131 Padova, Italy
- INFN, Sezione di Padova, via Marzolo 8, I-35131 Padova, Italy
| | - Chantal Valeriani
- Dep. Est. de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain
- GISC - Grupo Interdisciplinar de Sistemas Complejos, 28040 Madrid, Spain
| |
Collapse
|
13
|
Vatin M, Kundu S, Locatelli E. Conformation and dynamics of partially active linear polymers. SOFT MATTER 2024; 20:1892-1904. [PMID: 38323323 DOI: 10.1039/d3sm01162c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
We perform numerical simulations of isolated, partially active polymers, driven out-of-equilibrium by a fraction of their monomers. We show that, if the active beads are all gathered in a contiguous block, the position of the section along the chain determines the conformational and dynamical properties of the system. Notably, one can modulate the diffusion coefficient of the polymer from active-like to passive-like just by changing the position of the active block. Further, we show that a slight modification of the self-propulsion rule may give rise to an enhancement of diffusion under certain conditions, despite a decrease of the overall polymer activity. Our findings may help in the modelisation of active biophysical systems, such as filamentous bacteria or worms.
Collapse
Affiliation(s)
- Marin Vatin
- Department of Physics and Astronomy, University of Padova, Via Marzolo 8, I-35131 Padova, Italy.
- INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy
| | - Sumanta Kundu
- Department of Physics and Astronomy, University of Padova, Via Marzolo 8, I-35131 Padova, Italy.
- INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy
- International School for Advanced Studies (SISSA), 34136, Trieste, Italy
| | - Emanuele Locatelli
- Department of Physics and Astronomy, University of Padova, Via Marzolo 8, I-35131 Padova, Italy.
- INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy
| |
Collapse
|
14
|
Abdelrahman MK, Wagner RJ, Kalairaj MS, Zadan M, Kim MH, Jang LK, Wang S, Javed M, Dana A, Singh KA, Hargett SE, Gaharwar AK, Majidi C, Vernerey FJ, Ware TH. Material assembly from collective action of shape-changing polymers. NATURE MATERIALS 2024; 23:281-289. [PMID: 38177377 DOI: 10.1038/s41563-023-01761-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 11/14/2023] [Indexed: 01/06/2024]
Abstract
Some animals form transient, responsive and solid-like ensembles through dynamic structural interactions. These ensembles demonstrate emergent responses such as spontaneous self-assembly, which are difficult to achieve in synthetic soft matter. Here we use shape-morphing units comprising responsive polymers to create solids that self-assemble, modulate their volume and disassemble on demand. The ensemble is composed of a responsive hydrogel, liquid crystal elastomer or semicrystalline polymer ribbons that reversibly bend or twist. The dispersions of these ribbons mechanically interlock, inducing reversible aggregation. The aggregated liquid crystal elastomer ribbons have a 12-fold increase in the yield stress compared with cooled dispersion and contract by 34% on heating. Ribbon type, concentration and shape dictate the aggregation and govern the global mechanical properties of the solid that forms. Coating liquid crystal elastomer ribbons with a liquid metal begets photoresponsive and electrically conductive aggregates, whereas seeding cells on hydrogel ribbons enables self-assembling three-dimensional scaffolds, providing a versatile platform for the design of dynamic materials.
Collapse
Affiliation(s)
- Mustafa K Abdelrahman
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA
| | - Robert J Wagner
- Mechanical Engineering Department, Materials Science and Engineering Program, University of Colorado, Boulder, CO, USA
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | | | - Mason Zadan
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Min Hee Kim
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Lindy K Jang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Materials Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Suitu Wang
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA
| | - Mahjabeen Javed
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Asaf Dana
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Kanwar Abhay Singh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Sarah E Hargett
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Carmel Majidi
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Franck J Vernerey
- Mechanical Engineering Department, Materials Science and Engineering Program, University of Colorado, Boulder, CO, USA
| | - Taylor H Ware
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA.
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
15
|
Rudyak VY, Lopushenko A, Palyulin VV, Chertovich AV. Long-range ordering of velocity-aligned active polymers. J Chem Phys 2024; 160:044905. [PMID: 38275191 DOI: 10.1063/5.0181252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
In this work, we study the effect of covalent bonding on the behavior of non-equilibrium systems with the active force acting on particles along their velocity. Self-ordering of single particles does not occur in this model. However, starting from some critical polymerization degree, the ordered state is observed. It is homogeneous and exhibits no phase separation. In the ordered state, the chains prefer a near-two-dimensional configuration and all move in one direction. Importantly, the self-ordering is obtained only at intermediate active force magnitudes. At high magnitudes, the transition from the disordered to ordered state is suppressed by the swelling of the chains during the transition, as we show by the transition kinetics analysis. We demonstrate the bistable behavior of the system in a particular range of polymerization degrees, amplitudes of active force, densities, and thermostat temperatures. Overall, we show that covalent bonding greatly aids the self-ordering in this active particle model, in contrast to active Brownian particles.
Collapse
Affiliation(s)
- Vladimir Yu Rudyak
- Semenov Federal Research Center for Chemical Physics, Kosygina, 4, 119991 Moscow, Russia
| | - Alexander Lopushenko
- Semenov Federal Research Center for Chemical Physics, Kosygina, 4, 119991 Moscow, Russia
| | - Vladimir V Palyulin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, 121205 Moscow, Russia
| | - Alexander V Chertovich
- Semenov Federal Research Center for Chemical Physics, Kosygina, 4, 119991 Moscow, Russia
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
16
|
Panda A, Winkler RG, Singh SP. Characteristic features of self-avoiding active Brownian polymers under linear shear flow. SOFT MATTER 2023; 19:8577-8586. [PMID: 37905462 DOI: 10.1039/d3sm01334k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
We present Brownian dynamics simulation results of a flexible linear polymer with excluded-volume interactions under shear flow in the presence of active noise. The active noise strongly affects the polymer's conformational and dynamical properties, such as the stretching in the flow direction and compression in the gradient direction, shear-induced alignment, and shear viscosity. In the asymptotic limit of large activities and shear rates, the power-law scaling exponents of these quantities differ significantly from those of passive polymers. The chain's shear-induced stretching at a given shear rate is reduced by active noise, and it displays a non-monotonic behavior, where an initial polymer compression is followed by its stretching with increasing active force. The compression of the polymer in the gradient direction follows the relation ∼WiPe-3/4 as a function of the activity-dependent Weissenberg number WiPe, which differs from the scaling observed in passive systems ∼WiPe-1/2. The flow-induced alignment at large Péclet numbers Pe ≫ 1, where Pe is the Péclet number, and large shear rates WiPe ≫ 1 displays the scaling behavior WiPe-1/2, with an exponent differing from the passive value -1/3. Furthermore, the polymer's zero-shear viscosity displays a non-monotonic behavior, decreasing in an intermediate activity regime due to excluded-volume interactions and increasing again for large Pe. Shear thinning appears with increasing Weissenberg number with the power-laws WiPe-1/2 and WiPe-3/4 for passive and active polymers, respectively. In addition, our simulation results are compared with the results of an analytical approach, which predicts quantitatively similar behaviors for the various aforementioned physical quantities.
Collapse
Affiliation(s)
- Arindam Panda
- Department of Physics, Indian Institute of Science Education and Research, Bhopal 462 066, Madhya Pradesh, India.
| | - Roland G Winkler
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52428 Jülich, Germany.
| | - Sunil P Singh
- Department of Physics, Indian Institute of Science Education and Research, Bhopal 462 066, Madhya Pradesh, India.
| |
Collapse
|
17
|
Deblais A, Prathyusha KR, Sinaasappel R, Tuazon H, Tiwari I, Patil VP, Bhamla MS. Worm blobs as entangled living polymers: from topological active matter to flexible soft robot collectives. SOFT MATTER 2023; 19:7057-7069. [PMID: 37706563 PMCID: PMC10523214 DOI: 10.1039/d3sm00542a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023]
Abstract
Recently, the study of long, slender living worms has gained attention due to their unique ability to form highly entangled physical structures, exhibiting emergent behaviors. These organisms can assemble into an active three-dimensional soft entity referred to as the "blob", which exhibits both solid-like and liquid-like properties. This blob can respond to external stimuli such as light, to move or change shape. In this perspective article, we acknowledge the extensive and rich history of polymer physics, while illustrating how these living worms provide a fascinating experimental platform for investigating the physics of active, polymer-like entities. The combination of activity, long aspect ratio, and entanglement in these worms gives rise to a diverse range of emergent behaviors. By understanding the intricate dynamics of the worm blob, we could potentially stimulate further research into the behavior of entangled active polymers, and guide the advancement of synthetic topological active matter and bioinspired tangling soft robot collectives.
Collapse
Affiliation(s)
- Antoine Deblais
- van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands.
| | - K R Prathyusha
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Rosa Sinaasappel
- van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands.
| | - Harry Tuazon
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Ishant Tiwari
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Vishal P Patil
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - M Saad Bhamla
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
18
|
Fazelzadeh M, Irani E, Mokhtari Z, Jabbari-Farouji S. Effects of inertia on conformation and dynamics of tangentially driven active filaments. Phys Rev E 2023; 108:024606. [PMID: 37723735 DOI: 10.1103/physreve.108.024606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 07/11/2023] [Indexed: 09/20/2023]
Abstract
Active filamentlike systems propelling along their backbone exist across scales ranging from motor-driven biofilaments to worms and robotic chains. In macroscopic active filaments such as a chain of robots, in contrast to their microscopic counterparts, inertial effects on their motion cannot be ignored. Nonetheless, the consequences of the interplay between inertia and flexibility on the shape and dynamics of active filaments remain unexplored. Here we examine inertial effects on a flexible tangentially driven active polymer model pertinent to the above examples and we determine the conditions under which inertia becomes important. Performing Langevin dynamics simulations of active polymers with underdamped and overdamped dynamics for a wide range of contour lengths and activities, we uncover striking inertial effects on conformation and dynamics for high levels of activities. Inertial collisions increase the persistence length of active polymers and remarkably alter their scaling behavior. In stark contrast to passive polymers, inertia leaves its fingerprint at long times by an enhanced diffusion of the center of mass. We rationalize inertia-induced enhanced dynamics by analytical calculations of center-of-mass velocity correlations, applicable to any active polymer model, which reveal significant contributions from active force fluctuations convoluted by inertial relaxation.
Collapse
Affiliation(s)
- Mohammad Fazelzadeh
- Institute of Physics, University of Amsterdam, 1090 GL Amsterdam, The Netherlands
| | - Ehsan Irani
- Institute for Theoretical Physics, Georg-August University of Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| | - Zahra Mokhtari
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Sara Jabbari-Farouji
- Institute of Physics, University of Amsterdam, 1090 GL Amsterdam, The Netherlands
| |
Collapse
|
19
|
Savoie W, Tuazon H, Tiwari I, Bhamla MS, Goldman DI. Amorphous entangled active matter. SOFT MATTER 2023; 19:1952-1965. [PMID: 36809295 PMCID: PMC11164134 DOI: 10.1039/d2sm01573k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The design of amorphous entangled systems, specifically from soft and active materials, has the potential to open exciting new classes of active, shape-shifting, and task-capable 'smart' materials. However, the global emergent mechanics that arise from the local interactions of individual particles are not well understood. In this study, we examine the emergent properties of amorphous entangled systems in an in silico collection of u-shaped particles ("smarticles") and in living entangled aggregate of worm blobs (L. variegatus). In simulations, we examine how material properties change for a collective composed of smarticles as they undergo different forcing protocols. We compare three methods of controlling entanglement in the collective: external oscillations of the ensemble, sudden shape-changes of all individuals, and sustained internal oscillations of all individuals. We find that large-amplitude changes of the particle's shape using the shape-change procedure produce the largest average number of entanglements, with respect to the aspect ratio (l/w), thus improving the tensile strength of the collective. We demonstrate applications of these simulations by showing how the individual worm activity in a blob can be controlled through the ambient dissolved oxygen in water, leading to complex emergent properties of the living entangled collective, such as solid-like entanglement and tumbling. Our work reveals principles by which future shape-modulating, potentially soft robotic systems may dynamically alter their material properties, advancing our understanding of living entangled materials, while inspiring new classes of synthetic emergent super-materials.
Collapse
Affiliation(s)
- William Savoie
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30318, USA
| | - Harry Tuazon
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30318, USA.
| | - Ishant Tiwari
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30318, USA.
| | - M Saad Bhamla
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30318, USA.
| | - Daniel I Goldman
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30318, USA
| |
Collapse
|
20
|
Tejedor AR, Carracedo R, Ramírez J. Molecular dynamics simulations of active entangled polymers reptating through a passive mesh. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
21
|
Tuazon H, Kaufman E, Goldman DI, Bhamla MS. Oxygenation-Controlled Collective Dynamics in Aquatic Worm Blobs. Integr Comp Biol 2022; 62:890-896. [PMID: 35689658 DOI: 10.1093/icb/icac089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 11/14/2022] Open
Abstract
Many organisms utilize group aggregation as a method for survival. The freshwater oligochaete, Lumbriculus variegatus (California blackworms) form tightly entangled structures, or worm "blobs", that have adapted to survive in extremely low levels of dissolved oxygen (DO). Individual blackworms adapt to hypoxic environments through respiration via their mucous body wall and posterior ciliated hindgut, which they wave above them. However, the change in collective behavior at different levels of DO is not known. Using a closed-loop respirometer with flow, we discover that the relative tail reaching activity flux in low DO is ∼75x higher than in the high DO condition. Additionally, when flow rate is increased to suspend the worm blobs upward, we find that the average exposed surface area of a blob in low DO is ∼1.4x higher than in high DO. Furthermore, we observe emergent properties that arise when a worm blob is exposed to extreme DO levels. We demonstrate that internal mechanical stress is generated when worm blobs are exposed to high DO levels, allowing them to be physically lifted off from the bottom of a conical container using a serrated endpiece. Our results demonstrate how both collective behavior and the emergent generation of internal mechanical stress in worm blobs change to accommodate differing levels of oxygen. From an engineering perspective, this could be used to model and simulate swarm robots, self-assembly structures, or soft material entanglements.
Collapse
Affiliation(s)
- Harry Tuazon
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Emily Kaufman
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Daniel I Goldman
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - M Saad Bhamla
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| |
Collapse
|
22
|
Heeremans T, Deblais A, Bonn D, Woutersen S. Chromatographic separation of active polymer-like worm mixtures by contour length and activity. SCIENCE ADVANCES 2022; 8:eabj7918. [PMID: 35675403 PMCID: PMC9177071 DOI: 10.1126/sciadv.abj7918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The convective transport rate of polymers through confined geometries depends on their size, allowing for size-based separation of polymer mixtures (chromatography). Here, we investigate whether mixtures of active polymers can be separated in a similar manner based on their activity. We use thin, living Tubifex tubifex worms as a model system for active polymers and study the transport of these worms by an imposed flow through a channel filled with a hexagonal pillar array. The transport rate through the channel depends strongly on the degree of activity, an effect that we assign to the different distribution of conformations sampled by the worms depending on their activity. Our results demonstrate a unique way to sort mixtures of active polymers based on their activity and provide a versatile and convenient experimental system to investigate the hydrodynamics of active polymers.
Collapse
Affiliation(s)
- Tess Heeremans
- Van der Waals-Zeeman Institute, IoP, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands
| | - Antoine Deblais
- Van der Waals-Zeeman Institute, IoP, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands
- Corresponding author. (A.D.); (D.B.); (S.W.)
| | - Daniel Bonn
- Van der Waals-Zeeman Institute, IoP, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands
- Corresponding author. (A.D.); (D.B.); (S.W.)
| | - Sander Woutersen
- Van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands
- Corresponding author. (A.D.); (D.B.); (S.W.)
| |
Collapse
|
23
|
Kurzthaler C, Mandal S, Bhattacharjee T, Löwen H, Datta SS, Stone HA. A geometric criterion for the optimal spreading of active polymers in porous media. Nat Commun 2021; 12:7088. [PMID: 34873164 PMCID: PMC8648790 DOI: 10.1038/s41467-021-26942-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/21/2021] [Indexed: 11/26/2022] Open
Abstract
Efficient navigation through disordered, porous environments poses a major challenge for swimming microorganisms and future synthetic cargo-carriers. We perform Brownian dynamics simulations of active stiff polymers undergoing run-reverse dynamics, and so mimic bacterial swimming, in porous media. In accord with experiments of Escherichia coli, the polymer dynamics are characterized by trapping phases interrupted by directed hopping motion through the pores. Our findings show that the spreading of active agents in porous media can be optimized by tuning their run lengths, which we rationalize using a coarse-grained model. More significantly, we discover a geometric criterion for the optimal spreading, which emerges when their run lengths are comparable to the longest straight path available in the porous medium. Our criterion unifies results for porous media with disparate pore sizes and shapes and for run-and-tumble polymers. It thus provides a fundamental principle for optimal transport of active agents in densely-packed biological and environmental settings.
Collapse
Affiliation(s)
- Christina Kurzthaler
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA.
| | - Suvendu Mandal
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, 79104, Freiburg, Germany.
- Institut für Physik der kondensierten Materie, Technische Universität Darmstadt, 64289, Darmstadt, Germany.
| | - Tapomoy Bhattacharjee
- The Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, USA
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Sujit S Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
24
|
Abstract
Living systems at all scales aggregate in large numbers for a variety of functions including mating, predation, and survival. The majority of such systems consist of unconnected individuals that collectively flock, school, or swarm. However, some aggregations involve physically entangled individuals, which can confer emergent mechanofunctional material properties to the collective. Here, we study in laboratory experiments and rationalize in theoretical and robophysical models the dynamics of physically entangled and motile self-assemblies of 1-cm-long California blackworms (Lumbriculus variegatus, Annelida: Clitellata: Lumbriculidae). Thousands of individual worms form braids with their long, slender, and flexible bodies to make a three-dimensional, soft, and shape-shifting "blob." The blob behaves as a living material capable of mitigating damage and assault from environmental stresses through dynamic shape transformations, including minimizing surface area for survival against desiccation and enabling transport (negative thermotaxis) from hazardous environments (like heat). We specifically focus on the locomotion of the blob to understand how an amorphous entangled ball of worms can break symmetry to move across a substrate. We hypothesize that the collective blob displays rudimentary differentiation of function across itself, which when combined with entanglement dynamics facilitates directed persistent blob locomotion. To test this, we develop a robophysical model of the worm blobs, which displays emergent locomotion in the collective without sophisticated control or programming of any individual robot. The emergent dynamics of the living functional blob and robophysical model can inform the design of additional classes of adaptive mechanofunctional living materials and emergent robotics.
Collapse
|
25
|
Affiliation(s)
- Roland G. Winkler
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
26
|
Deblais A, Maggs AC, Bonn D, Woutersen S. Phase Separation by Entanglement of Active Polymerlike Worms. PHYSICAL REVIEW LETTERS 2020; 124:208006. [PMID: 32501051 DOI: 10.1103/physrevlett.124.208006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/24/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
We investigate the aggregation and phase separation of thin, living T. tubifex worms that behave as active polymers. Randomly dispersed active worms spontaneously aggregate to form compact, highly entangled blobs, a process similar to polymer phase separation, and for which we observe power-law growth kinetics. We find that the phase separation of active polymerlike worms does not occur through Ostwald ripening, but through active motion and coalescence of the phase domains. Interestingly, the growth mechanism differs from conventional growth by droplet coalescence: the diffusion constant characterizing the random motion of a worm blob is independent of its size, a phenomenon that can be explained from the fact that the active random motion arises from the worms at the surface of the blob. This leads to a fundamentally different phase-separation mechanism that may be unique to active polymers.
Collapse
Affiliation(s)
- A Deblais
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| | - A C Maggs
- UMR Gulliver 7083 CNRS, ESPCI, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
| | - D Bonn
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| | - S Woutersen
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|