1
|
Chen S, Fu HH. Chirality-Induced Majorana Zero Modes and Majorana Polarization. ACS NANO 2024; 18:34126-34133. [PMID: 39638808 DOI: 10.1021/acsnano.4c10395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Realizing Majorana Fermions has always been regarded as a crucial and formidable task in topological superconductors. In this work, we report a physical mechanism and a material platform for realizing Majorana zero modes (MZMs). This material platform consists of open circular helix molecule (CHM) proximity coupled with an s-wave superconductor (under an external magnetic field) or interconnected-CHM chain coupled with a phase-bias s-wave superconducting heterostructure (without any external magnetic field). MZMs generated here are tightly associated with the structural chirality in CHMs. Notably, the left- and right-handedness results in completely opposite Majorana polarization (MP), leading us to refer to this phenomenon as chirality-induced MP (CIMP). Importantly, the local CIMP is closely linked to chirality-induced spin polarization, providing us with an effective way to regulate MZMs through the chirality-induced spin selectivity (CISS) effect. Furthermore, MZMs can be detected by the spin-polarized current measurements related to the CISS in chiral materials.
Collapse
Affiliation(s)
- Song Chen
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Hua-Hua Fu
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
- Institute for Quantum Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| |
Collapse
|
2
|
Ghorashi SAA, Hughes TL, Cano J. Altermagnetic Routes to Majorana Modes in Zero Net Magnetization. PHYSICAL REVIEW LETTERS 2024; 133:106601. [PMID: 39303240 DOI: 10.1103/physrevlett.133.106601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 05/20/2024] [Accepted: 08/09/2024] [Indexed: 09/22/2024]
Abstract
We propose heterostructures that realize first and second order topological superconductivity with vanishing net magnetization by utilizing altermagnetism. Such platforms may offer a significant improvement over conventional platforms with uniform magnetization since the latter suppresses the superconducting gap. We first introduce a 1D semiconductor-superconductor structure in proximity to an altermagnet that realizes end Majorana zero modes (MZMs) with vanishing net magnetization. Additionally, a coexisting Zeeman term provides a tuning knob to distinguish topological and trivial zero modes. We then propose 2D altermagnetic platforms that can realize chiral Majorana fermions or higher order corner MZMs. Our Letter paves the way toward realizing Majorana boundary states with an alternative source of time-reversal breaking and zero net magnetization.
Collapse
|
3
|
Li X, Zhang S, Zhang X, Vardeny ZV, Liu F. Topological Nodal-Point Superconductivity in Two-Dimensional Ferroelectric Hybrid Perovskites. NANO LETTERS 2024; 24:2705-2711. [PMID: 38240732 DOI: 10.1021/acs.nanolett.3c04085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Two-dimensional (2D) hybrid organic-inorganic perovskites (HOIPs) with enhanced stability, high tunability, and strong spin-orbit coupling have shown great potential in vast applications. Here, we extend the already rich functionality of 2D HOIPs to a new territory, realizing topological superconductivity and Majorana modes for fault-tolerant quantum computation. Especially, we predict that room-temperature ferroelectric BA2PbCl4 (BA for benzylammonium) exhibits topological nodal-point superconductivity (NSC) and gapless Majorana modes on selected edges and ferroelectric domain walls when proximity-coupled to an s-wave superconductor and an in-plane Zeeman field, attractive for experimental verification and application. Since NSC is protected by spatial symmetry of 2D HOIPs, we envision more exotic topological superconducting states to be found in this class of materials due to their diverse noncentrosymmetric space groups, which may open a new avenue in the fields of HOIPs and topological superconductivity.
Collapse
Affiliation(s)
- Xiaoyin Li
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Shunhong Zhang
- International Center for Quantum Design of Functional Materials (ICQD), University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Xiaoming Zhang
- College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao, Shandong 266100, People's Republic of China
| | - Zeev Valy Vardeny
- Department of Physics & Astronomy, University of Utah, Salt Lake City, Utah 84112, United States
| | - Feng Liu
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
4
|
Fedoseev AD. Modification of topological corner excitations at the interplay of boundary geometry and Coulomb interaction. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:455301. [PMID: 37549671 DOI: 10.1088/1361-648x/aceddf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
The effect of Coulomb interaction on the 2D second order topological superconductor is investigated taking into account different geometries of the boundary in the mainframe of the mean-field approximation. The spontaneous symmetry breaking, described earlier in Aksenovet al(2023Phys. Rev.B107125401), is found to be robust against the boundary deformation. Meanwhile, the details of the state with spontaneously broken symmetry is found to be dependent on the specific boundary geometry. Considering different types of the boundary of the 2D system, it is demonstrated that the deviation of the electron density in the broken symmetry state is determined by the position of the zero-dimensional (second-order) excitations with nearly zero energy. The critical value of the Coulomb interaction, at which the transition occurs, is found to be determined by the energy of these excitations, which is non-zero due to overlapping of the wave-functions at different corners.
Collapse
Affiliation(s)
- A D Fedoseev
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Akademgorodok 50/38, 660036 Krasnoyarsk, Russia
| |
Collapse
|
5
|
Wu YJ, Tu W, Li N. Majorana corner states in an attractive quantum spin Hall insulator with opposite in-plane Zeeman energy at two sublattice sites. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:375601. [PMID: 35793693 DOI: 10.1088/1361-648x/ac7f19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Higher-order topological superconductors and superfluids (SFs) host lower-dimensional Majorana corner and hinge states since novel topology exhibitions on boundaries. While such topological nontrivial phases have been explored extensively, more possible schemes are necessary for engineering Majorana states. In this paper we propose Majorana corner states could be realized in a two-dimensional attractive quantum spin-Hall insulator with opposite in-plane Zeeman energy at two sublattice sites. The appropriate Zeeman field leads to the opposite Dirac mass for adjacent edges of a square sample, and naturally induce Majorana corner states. This topological phase can be characterized by Majorana edge polarizations, and it is robust against perturbations on random potentials and random phase fluctuations as long as the edge gap remains open. Our work provides a new possibility to realize a second-order topological SF in two dimensions and engineer Majorana corner states.
Collapse
Affiliation(s)
- Ya-Jie Wu
- School of Sciences, Xi'an Technological University, Xi'an 710032, People's Republic of China
| | - Wei Tu
- School of Sciences, Xi'an Technological University, Xi'an 710032, People's Republic of China
| | - Ning Li
- School of Sciences, Xi'an Technological University, Xi'an 710032, People's Republic of China
| |
Collapse
|
6
|
Lu B, Zhang Y. Tunable Majorana corner modes by orbital-dependent exchange interaction in a two-dimensional topological superconductor. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:305302. [PMID: 35580592 DOI: 10.1088/1361-648x/ac709e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
We theoretically study the effect of orbital-dependent exchange field in the formation of second order topological superconductors. We demonstrate that changing the orbital difference can induce topological transition and the Majorana corner modes therein can be manipulated. We further propose to detect the corner modes via a normal probe terminal. The conductance quantization is found to be robust to changes of the relevant system parameters.
Collapse
Affiliation(s)
- Bo Lu
- Center for Joint Quantum Studies and Department of Physics, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yiying Zhang
- Center for Joint Quantum Studies and Department of Physics, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
7
|
Wu X, Liu X, Thomale R, Liu CX. High- T c superconductor Fe(Se,Te) monolayer: an intrinsic, scalable and electrically tunable Majorana platform. Natl Sci Rev 2022; 9:nwab087. [PMID: 35308561 PMCID: PMC8924703 DOI: 10.1093/nsr/nwab087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 04/25/2021] [Accepted: 04/25/2021] [Indexed: 11/30/2022] Open
Abstract
Iron-based superconductors have been identified as a novel platform for realizing Majorana zero modes (MZMs) without heterostructures, due to their intrinsic topological properties and high-T c superconductivity. In the two-dimensional limit, the FeTe1-x Se x monolayer, a topological band inversion has recently been experimentally observed. Here, we propose to create MZMs by applying an in-plane magnetic field to the FeTe1-x Se x monolayer and tuning the local chemical potential via electric gating. Owing to the anisotropic magnetic couplings on edges, an in-plane magnetic field drives the system into an intrinsic high-order topological superconductor phase with Majorana corner modes. Furthermore, MZMs can occur at the domain wall of chemical potentials at either one edge or certain type of tri-junction in the two-dimensional bulk. Our study not only reveals the FeTe1-x Se x monolayer as a promising Majorana platform with scalability and electrical tunability and within reach of contemporary experimental capability, but also provides a general principle to search for realistic realization of high-order topological superconductivity.
Collapse
Affiliation(s)
- Xianxin Wu
- Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany
| | - Xin Liu
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ronny Thomale
- Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany
| | - Chao-Xing Liu
- Department of Physics, the Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
8
|
Liu T, He JJ, Yang Z, Nori F. Higher-Order Weyl-Exceptional-Ring Semimetals. PHYSICAL REVIEW LETTERS 2021; 127:196801. [PMID: 34797150 DOI: 10.1103/physrevlett.127.196801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
For first-order topological semimetals, non-Hermitian perturbations can drive the Weyl nodes into Weyl exceptional rings having multiple topological structures and no Hermitian counterparts. Recently, it was discovered that higher-order Weyl semimetals, as a novel class of higher-order topological phases, can uniquely exhibit coexisting surface and hinge Fermi arcs. However, non-Hermitian higher-order topological semimetals have not yet been explored. Here, we identify a new type of topological semimetal, i.e., a higher-order topological semimetal with Weyl exceptional rings. In such a semimetal, these rings are characterized by both a spectral winding number and a Chern number. Moreover, the higher-order Weyl-exceptional-ring semimetal supports both surface and hinge Fermi-arc states, which are bounded by the projection of the Weyl exceptional rings onto the surface and hinge, respectively. Noticeably, the dissipative terms can cause the coupling of two exceptional rings with opposite topological charges, so as to induce topological phase transitions. Our studies open new avenues for exploring novel higher-order topological semimetals in non-Hermitian systems.
Collapse
Affiliation(s)
- Tao Liu
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
| | - James Jun He
- RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
| | - Zhongmin Yang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
- South China Normal University, Guangzhou 510006, China
- State Key Laboratory of Luminescent Materials and Devices and Institute of Optical Communication Materials, South China University of Technology, Guangzhou 510640, China
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Quantum Computing (RQC), Wako-shi, Saitama 351-0198, Japan
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
9
|
Huang X, Lu J, Yan Z, Yan M, Deng W, Chen G, Liu Z. Acoustic higher-order topology derived from first-order with built-in Zeeman-like fields. Sci Bull (Beijing) 2021; 67:488-494. [DOI: 10.1016/j.scib.2021.11.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/20/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022]
|
10
|
Niu J, Yan T, Zhou Y, Tao Z, Li X, Liu W, Zhang L, Jia H, Liu S, Yan Z, Chen Y, Yu D. Simulation of higher-order topological phases and related topological phase transitions in a superconducting qubit. Sci Bull (Beijing) 2021; 66:1168-1175. [PMID: 36654354 DOI: 10.1016/j.scib.2021.02.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/08/2021] [Accepted: 02/23/2021] [Indexed: 01/20/2023]
Abstract
Higher-order topological phases give rise to new bulk and boundary physics, as well as new classes of topological phase transitions. While the realization of higher-order topological phases has been confirmed in many platforms by detecting the existence of gapless boundary modes, a direct determination of the higher-order topology and related topological phase transitions through the bulk in experiments has still been lacking. To bridge the gap, in this work we carry out the simulation of a two-dimensional second-order topological phase in a superconducting qubit. Owing to the great flexibility and controllability of the quantum simulator, we observe the realization of higher-order topology directly through the measurement of the pseudo-spin texture in momentum space of the bulk for the first time, in sharp contrast to previous experiments based on the detection of gapless boundary modes in real space. Also through the measurement of the evolution of pseudo-spin texture with parameters, we further observe novel topological phase transitions from the second-order topological phase to the trivial phase, as well as to the first-order topological phase with nonzero Chern number. Our work sheds new light on the study of higher-order topological phases and topological phase transitions.
Collapse
Affiliation(s)
- Jingjing Niu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tongxing Yan
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuxuan Zhou
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ziyu Tao
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaole Li
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weiyang Liu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Libo Zhang
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hao Jia
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Song Liu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Zhongbo Yan
- School of Physics, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yuanzhen Chen
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Dapeng Yu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
11
|
Fedoseev AD. Corner excitations in the 2D triangle-shaped topological insulator with chiral superconductivity on the triangular lattice. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:405302. [PMID: 32554877 DOI: 10.1088/1361-648x/ab9e2f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
The 2D triangle-shapedC3-symmetric topological insulator with the chiral superconducting coupling on the triangular lattice is investigated. While such a system cannot provide the topologically protected corner excitations, we report the presence of the nontopological corner excitations with energy value to lie in the first-order edge spectrum gap. Though these excitations are not topologically protected, they appear for a rather wide range of the parameters values and are robust against the boundary defects and weak disorder. We reveal the presence of the Majorana corner states, which appear along the line in the parameter space.
Collapse
Affiliation(s)
- A D Fedoseev
- Federal Research Center KSC SB RAS, Kirensky Institute of Physics, Akademgorodok 50/38, 660036 Krasnoyarsk, Russia
| |
Collapse
|
12
|
Kheirkhah M, Yan Z, Nagai Y, Marsiglio F. First- and Second-Order Topological Superconductivity and Temperature-Driven Topological Phase Transitions in the Extended Hubbard Model with Spin-Orbit Coupling. PHYSICAL REVIEW LETTERS 2020; 125:017001. [PMID: 32678655 DOI: 10.1103/physrevlett.125.017001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
The combination of spin-orbit coupling with interactions results in many exotic phases of matter. In this Letter, we investigate the superconducting pairing instability of the two-dimensional extended Hubbard model with both Rashba and Dresselhaus spin-orbit coupling within the mean-field level at both zero and finite temperature. We find that both first- and second-order time-reversal symmetry breaking topological gapped phases can be achieved under appropriate parameters and temperature regimes due to the presence of a favored even-parity s+id-wave pairing even in the absence of an external magnetic field or intrinsic magnetism. This results in two branches of chiral Majorana edge states on each edge or a single zero-energy Majorana corner state at each corner of the sample. Interestingly, we also find that not only does tuning the doping level lead to a direct topological phase transition between these two distinct topological gapped phases, but also using the temperature as a highly controllable and reversible tuning knob leads to different direct temperature-driven topological phase transitions between gapped and gapless topological superconducting phases. Our findings suggest new possibilities in interacting spin-orbit coupled systems by unifying both first- and higher-order topological superconductors in a simple but realistic microscopic model.
Collapse
Affiliation(s)
- Majid Kheirkhah
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Zhongbo Yan
- School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuki Nagai
- CCSE, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871, Japan
- Mathematical Science Team, RIKEN Center for Advanced Intelligence Project (AIP), 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Frank Marsiglio
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|