1
|
Saitoh K, Tighe BP. Jamming transition and normal modes of polydispersed soft particle packing. SOFT MATTER 2025; 21:1263-1268. [PMID: 39790006 DOI: 10.1039/d4sm01305k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The jamming transition of soft particles characterized by narrow size distributions has been well studied by physicists. However, polydispersed systems are more relevant to engineering, and the influence of polydispersity on jamming phenomena is still unexplored. Here, we numerically investigate jamming transitions of polydispersed soft particles in two dimensions. We find that polydispersity strongly influences contact forces, local coordination, and the jamming transition density. In contrast, the critical scaling of pressure and elastic moduli is not affected by the particle size distribution. Consistent with this observation, we find that the vibrational density of states is also insensitive to the polydispersity. Our results suggest that, regardless of particle size distributions, both mechanical and vibrational properties of soft particle packings near jamming are governed by the distance to jamming.
Collapse
Affiliation(s)
- Kuniyasu Saitoh
- Department of Physics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555, Japan.
| | - Brian P Tighe
- Delft University of Technology, Process & Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
2
|
Yang J, Sun Y, Yang Y, Wang Y, Hu B, Xia C. Parking spheres stochastically to model realistic granular packings. Phys Rev E 2025; 111:025406. [PMID: 40103155 DOI: 10.1103/physreve.111.025406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/21/2025] [Indexed: 03/20/2025]
Abstract
The packing geometry of granular solids and other amorphous materials is important to understand their macroscopic behaviors. However, their particle-scale assembly mechanism and the underlying statistical mechanical laws remain unclear. In this work, we develop a model to generate the local packing structures of granular spheres by parking them sequentially and stochastically, and connect the fluctuating structures to the thermodynamic equations of state. The influences of entropy, friction, and mechanical action on local configurations are decomposed with the aid of an effective interparticle interaction, a parking sequence of neighboring particles, and an external potential. Quasiuniversal laws of granular sphere packings observed in previous experiments are replicated by our model and their empirical dependences on particle friction and packing protocol are rationalized. This model provides a general statistical mechanical approach to understanding the nonequilibrium assembly mechanism of amorphous particle packing systems.
Collapse
Affiliation(s)
- Jing Yang
- East China Normal University, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, Shanghai 200241, China
| | - Yuwen Sun
- East China Normal University, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, Shanghai 200241, China
| | - Yang Yang
- East China Normal University, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, Shanghai 200241, China
| | - Yujie Wang
- Shanghai Jiao Tong University, School of Physics and Astronomy, Shanghai 200240, China
- Chengdu University of Technology, School of Physics, Chengdu 610059, China
- Chengdu University of Technology, State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu 610059, China
| | - Bingwen Hu
- East China Normal University, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, Shanghai 200241, China
| | - Chengjie Xia
- East China Normal University, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, Shanghai 200241, China
| |
Collapse
|
3
|
Xie Z, Atherton TJ. Jamming on convex deformable surfaces. SOFT MATTER 2024; 20:1070-1078. [PMID: 38206105 DOI: 10.1039/d2sm01608g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Jamming is a fundamental transition that governs the behavior of particulate media, including sand, foams and dense suspensions. Upon compression, such media change from freely flowing to a disordered, marginally stable solid that exhibits non-Hookean elasticity. While the jamming process is well established for fixed geometries, the nature and dynamics of jamming for a diverse class of soft materials and deformable substrates, including emulsions and biological matter, remains unknown. Here we propose a new scenario, metric jamming, where rigidification occurs on a surface that has been deformed from its ground state. Unlike classical jamming processes that exhibit discrete mechanical transitions, surprisingly we find that metric jammed states possess mechanical properties continuously tunable between those of classically jammed and conventional elastic media. The compact and curved geometry significantly alters the vibrational spectra of the structures relative to jamming in flat Euclidean space, and metric jammed systems also possess new types of vibrational mode that couple particle and shape degrees of freedom. Our work provides a theoretical framework that unifies our understanding of solidification processes that take place on deformable media and lays the groundwork to exploit jamming for the control and stabilization of shape in self-assembly processes.
Collapse
Affiliation(s)
- Zhaoyu Xie
- Department of Physics & Astronomy, Tufts University, 574 Boston Ave, Medford, MA 02155, USA.
| | - Timothy J Atherton
- Department of Physics & Astronomy, Tufts University, 574 Boston Ave, Medford, MA 02155, USA.
| |
Collapse
|
4
|
Charbonneau P, Morse PK. Jamming, relaxation, and memory in a minimally structured glass former. Phys Rev E 2023; 108:054102. [PMID: 38115479 DOI: 10.1103/physreve.108.054102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/03/2023] [Indexed: 12/21/2023]
Abstract
Structural glasses form through various out-of-equilibrium processes, including temperature quenches, rapid compression (crunches), and shear. Although each of these processes should be formally understandable within the recently formulated dynamical mean-field theory (DMFT) of glasses, the numerical tools needed to solve the DMFT equations up to the relevant physical regime do not yet exist. In this context, numerical simulations of minimally structured (and therefore mean-field-like) model glass formers can aid the search for and understanding of such solutions, thanks to their ability to disentangle structural from dimensional effects. We study here the infinite-range Mari-Kurchan model under simple out-of-equilibrium processes, and we compare results with the random Lorentz gas [J. Phys. A 55, 334001 (2022)10.1088/1751-8121/ac7f06]. Because both models are mean-field-like and formally equivalent in the limit of infinite spatial dimensions, robust features are expected to appear in the DMFT as well. The comparison provides insight into temperature and density onsets, memory, as well as anomalous relaxation. This work also further enriches the algorithmic understanding of the jamming density.
Collapse
Affiliation(s)
- Patrick Charbonneau
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - Peter K Morse
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
- Princeton Institute of Materials, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
5
|
Kozoň M, Schrijver R, Schlottbom M, van der Vegt JJW, Vos WL. Unsupervised machine learning to classify the confinement of waves in periodic superstructures. OPTICS EXPRESS 2023; 31:31177-31199. [PMID: 37710643 DOI: 10.1364/oe.492014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/04/2023] [Indexed: 09/16/2023]
Abstract
We propose a rigorous method to classify the dimensionality of wave confinement by utilizing unsupervised machine learning to enhance the accuracy of our recently presented scaling method [Phys. Rev. Lett.129, 176401 (2022)10.1103/PhysRevLett.129.176401]. We apply the standard k-means++ algorithm as well as our own model-based algorithm to 3D superlattices of resonant cavities embedded in a 3D inverse woodpile photonic band gap crystal with a range of design parameters. We compare their results against each other and against the direct usage of the scaling method without clustering. Since the clustering algorithms require the set of confinement dimensionalities present in the system as an input, we investigate cluster validity indices (CVIs) as a means to find these values. We conclude that the most accurate outcome is obtained by first applying direct scaling to find the correct set of confinement dimensionalities, and subsequently utilizing our model-based clustering algorithm to refine the results.
Collapse
|
6
|
Alkemade RM, Smallenburg F, Filion L. Improving the prediction of glassy dynamics by pinpointing the local cage. J Chem Phys 2023; 158:134512. [PMID: 37031101 DOI: 10.1063/5.0144822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2023] Open
Abstract
The relationship between structure and dynamics in glassy fluids remains an intriguing open question. Recent work has shown impressive advances in our ability to predict local dynamics using structural features, most notably due to the use of advanced machine learning techniques. Here, we explore whether a simple linear regression algorithm combined with intelligently chosen structural order parameters can reach the accuracy of the current, most advanced machine learning approaches for predicting dynamic propensity. To achieve this, we introduce a method to pinpoint the cage state of the initial configuration-i.e., the configuration consisting of the average particle positions when particle rearrangement is forbidden. We find that, in comparison to both the initial state and the inherent state, the structure of the cage state is highly predictive of the long-time dynamics of the system. Moreover, by combining the cage state information with the initial state, we are able to predict dynamic propensities with unprecedentedly high accuracy over a broad regime of time scales, including the caging regime.
Collapse
Affiliation(s)
- Rinske M Alkemade
- Soft Condensed Matter, Debye Institute of Nanomaterials Science, Utrecht University, Utrecht, Netherlands
| | - Frank Smallenburg
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Laura Filion
- Soft Condensed Matter, Debye Institute of Nanomaterials Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
7
|
Artiaco C, Díaz Hernández Rojas R, Parisi G, Ricci-Tersenghi F. Hard-sphere jamming through the lens of linear optimization. Phys Rev E 2022; 106:055310. [PMID: 36559351 DOI: 10.1103/physreve.106.055310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/21/2022] [Indexed: 06/17/2023]
Abstract
The jamming transition is ubiquitous. It is present in granular matter, foams, colloids, structural glasses, and many other systems. Yet, it defines a critical point whose properties still need to be fully understood. Recently, a major breakthrough came about when the replica formalism was extended to build a mean-field theory that provides an exact description of the jamming transition of spherical particles in the infinite-dimensional limit. While such theory explains the jamming critical behavior of both soft and hard spheres, investigating the transition in finite-dimensional systems poses very difficult and different problems, in particular from the numerical point of view. Soft particles are modeled by continuous potentials; thus, their jamming point can be reached through efficient energy minimization algorithms. In contrast, the latter methods are inapplicable to hard-sphere (HS) systems since the interaction energy among the particles is always zero by construction. To overcome these difficulties, here we recast the jamming of hard spheres as a constrained optimization problem and introduce the CALiPPSO algorithm, capable of readily producing jammed HS packings without including any effective potential. This algorithm brings a HS configuration of arbitrary dimensions to its jamming point by solving a chain of linear optimization problems. We show that there is a strict correspondence between the force balance conditions of jammed packings and the properties of the optimal solutions of CALiPPSO, whence we prove analytically that our packings are always isostatic and in mechanical equilibrium. Furthermore, using extensive numerical simulations, we show that our algorithm is able to probe the complex structure of the free-energy landscape, finding qualitative agreement with mean-field predictions. We also characterize the algorithmic complexity of CALiPPSO and provide an open-source implementation of it.
Collapse
Affiliation(s)
- Claudia Artiaco
- Department of Physics, KTH Royal Institute of Technology, Stockholm 106 91, Sweden
| | | | - Giorgio Parisi
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- INFN, Sezione di Roma1, and CNR-Nanotec, unità di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Federico Ricci-Tersenghi
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
- INFN, Sezione di Roma1, and CNR-Nanotec, unità di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
8
|
Kozoň M, Lagendijk A, Schlottbom M, van der Vegt JJW, Vos WL. Scaling Theory of Wave Confinement in Classical and Quantum Periodic Systems. PHYSICAL REVIEW LETTERS 2022; 129:176401. [PMID: 36332245 DOI: 10.1103/physrevlett.129.176401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Functional defects in periodic media confine waves-acoustic, electromagnetic, electronic, spin, etc.-in various dimensions, depending on the structure of the defect. While defects are usually modeled by a superlattice with a typical band-structure representation of energy levels, determining the confinement associated with a given band is highly nontrivial and no analytical method is known to date. Therefore, we propose a rigorous method to classify the dimensionality of wave confinement. Starting from the confinement energy and the mode volume, we use finite-size scaling to find that ratios of these quantities raised to certain powers yield the confinement dimensionality of each band. Our classification has negligible additional computational costs compared to a band structure calculation and is valid for any type of wave, both quantum and classical, and in any dimension. In the quantum regime, we illustrate our method on electronic confinement in 2D hexagonal boron nitride (BN) with a nitrogen vacancy, in agreement with previous results. In the classical case, we study a three-dimensional photonic band gap cavity superlattice, where we identify novel acceptorlike behavior. We briefly discuss the generalization to quasiperiodic lattices.
Collapse
Affiliation(s)
- Marek Kozoň
- Complex Photonic Systems (COPS), MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
- Mathematics of Computational Science (MACS), MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Ad Lagendijk
- Complex Photonic Systems (COPS), MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Matthias Schlottbom
- Mathematics of Computational Science (MACS), MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Jaap J W van der Vegt
- Mathematics of Computational Science (MACS), MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Willem L Vos
- Complex Photonic Systems (COPS), MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| |
Collapse
|
9
|
Dale JR, Sartor JD, Dennis RC, Corwin EI. Hyperuniform jammed sphere packings have anomalous material properties. Phys Rev E 2022; 106:024903. [PMID: 36109903 DOI: 10.1103/physreve.106.024903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
A spatial distribution is hyperuniform if it has local density fluctuations that vanish in the limit of long length scales. Hyperuniformity is a well known property of both crystals and quasicrystals. Of recent interest, however, is disordered hyperuniformity: the presence of hyperuniform scaling without long-range configurational order. Jammed granular packings have been proposed as an example of disordered hyperuniformity, but recent numerical investigation has revealed that many jammed systems instead exhibit a complex set of distinct behaviors at long, emergent length scales. We use the Voronoi tessellation as a tool to define a set of rescaling transformations that can impose hyperuniformity on an arbitrary weighted point process, and show that these transformations can be used in simulations to iteratively generate hyperuniform, mechanically stable packings of athermal soft spheres. These hyperuniform jammed packings display atypical mechanical properties, particularly in the low-frequency phononic excitations, which exhibit an isolated band of highly collective modes and a band gap around zero frequency.
Collapse
Affiliation(s)
- Jack R Dale
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| | - James D Sartor
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| | - R Cameron Dennis
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| | - Eric I Corwin
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
10
|
V Krishnan V, Ramola K, Karmakar S. Universal non-Debye low-frequency vibrations in sheared amorphous solids. SOFT MATTER 2022; 18:3395-3402. [PMID: 35416828 DOI: 10.1039/d2sm00218c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We study energy minimised configurations of amorphous solids with a simple shear degree of freedom. We show that the low-frequency regime of the vibrational density of states of structural glass formers is crucially sensitive to the macroscopic stress of the sampled configurations. In both two and three dimensions, shear-stabilised configurations display a D(ωmin) ∼ ω5min regime, as opposed to the ω4min regime observed under unstrained conditions. In order to isolate the source of these deviations from crystalline behaviour, we also study configurations of two dimensional, strained amorphous solids close to a plastic event. We show that the minimum eigenvalue distribution at a strain 'γ' near the plastic event occurring at 'γP' assumes a universal form that displays a collapse when scaled by , and with the number of particles as N-0.22. Notably, at low frequencies, this scaled distribution displays a robust D(ωmin) ∼ ω6min power-law regime, which survives in the large N limit. Finally, we probe the properties of these configurations through a characterisation of the second and third eigenvalues of the Hessian matrix near a plastic event.
Collapse
Affiliation(s)
- Vishnu V Krishnan
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India.
| | - Kabir Ramola
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India.
| | - Smarajit Karmakar
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India.
| |
Collapse
|
11
|
Charbonneau P, Corwin EI, Dennis RC, Díaz Hernández Rojas R, Ikeda H, Parisi G, Ricci-Tersenghi F. Finite-size effects in the microscopic critical properties of jammed configurations: A comprehensive study of the effects of different types of disorder. Phys Rev E 2021; 104:014102. [PMID: 34412313 DOI: 10.1103/physreve.104.014102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Jamming criticality defines a universality class that includes systems as diverse as glasses, colloids, foams, amorphous solids, constraint satisfaction problems, neural networks, etc. A particularly interesting feature of this class is that small interparticle forces (f) and gaps (h) are distributed according to nontrivial power laws. A recently developed mean-field (MF) theory predicts the characteristic exponents of these distributions in the limit of very high spatial dimension, d→∞ and, remarkably, their values seemingly agree with numerical estimates in physically relevant dimensions, d=2 and 3. These exponents are further connected through a pair of inequalities derived from stability conditions, and both theoretical predictions and previous numerical investigations suggest that these inequalities are saturated. Systems at the jamming point are thus only marginally stable. Despite the key physical role played by these exponents, their systematic evaluation has yet to be attempted. Here, we carefully test their value by analyzing the finite-size scaling of the distributions of f and h for various particle-based models for jamming. Both dimension and the direction of approach to the jamming point are also considered. We show that, in all models, finite-size effects are much more pronounced in the distribution of h than in that of f. We thus conclude that gaps are correlated over considerably longer scales than forces. Additionally, remarkable agreement with MF predictions is obtained in all but one model, namely near-crystalline packings. Our results thus help to better delineate the domain of the jamming universality class. We furthermore uncover a secondary linear regime in the distribution tails of both f and h. This surprisingly robust feature is understood to follow from the (near) isostaticity of our configurations.
Collapse
Affiliation(s)
- Patrick Charbonneau
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - Eric I Corwin
- Department of Physics and Material Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| | - R Cameron Dennis
- Department of Physics and Material Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| | | | - Harukuni Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo, 153-8902, Japan
| | - Giorgio Parisi
- Dipartimento di Fisica, Sapienza Università di Roma, 00185 Rome, Italy
- INFN, Sezione di Roma1, and CNR-Nanotec, unità di Roma, 00185 Rome, Italy
| | - Federico Ricci-Tersenghi
- Dipartimento di Fisica, Sapienza Università di Roma, 00185 Rome, Italy
- INFN, Sezione di Roma1, and CNR-Nanotec, unità di Roma, 00185 Rome, Italy
| |
Collapse
|
12
|
Charbonneau P, Morse PK. Memory Formation in Jammed Hard Spheres. PHYSICAL REVIEW LETTERS 2021; 126:088001. [PMID: 33709757 DOI: 10.1103/physrevlett.126.088001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Liquids equilibrated below an onset condition share similar inherent states, while those above that onset have inherent states that markedly differ. Although this type of materials memory was first reported in simulations over 20 years ago, its physical origin remains controversial. Its absence from mean-field descriptions, in particular, has long cast doubt on its thermodynamic relevance. Motivated by a recent theoretical proposal, we reassess the onset phenomenology in simulations using a fast hard sphere jamming algorithm and find it to be both thermodynamically and dimensionally robust. Remarkably, we also uncover a second type of memory associated with a Gardner-like regime of the jamming algorithm.
Collapse
Affiliation(s)
- Patrick Charbonneau
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - Peter K Morse
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
13
|
Sartor JD, Ridout SA, Corwin EI. Mean-Field Predictions of Scaling Prefactors Match Low-Dimensional Jammed Packings. PHYSICAL REVIEW LETTERS 2021; 126:048001. [PMID: 33576677 DOI: 10.1103/physrevlett.126.048001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/02/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
No known analytic framework precisely explains all the phenomena observed in jamming. The replica theory for glasses and jamming is a mean-field theory which attempts to do so by working in the limit of infinite dimensions, such that correlations between neighbors are negligible. As such, results from this mean-field theory are not guaranteed to be observed in finite dimensions. However, many results in mean field for jamming have been shown to be exact or nearly exact in low dimensions. This suggests that the infinite dimensional limit is not necessary to obtain these results. In this Letter, we perform precision measurements of jamming scaling relationships between pressure, excess packing fraction, and number of excess contacts from dimensions 2-10 in order to extract the prefactors to these scalings. While these prefactors should be highly sensitive to finite dimensional corrections, we find the mean-field predictions for these prefactors to be exact in low dimensions. Thus the mean-field approximation is not necessary for deriving these prefactors. We present an exact, first-principles derivation for one, leaving the other as an open question. Our results suggest that mean-field theories of critical phenomena may compute more for d≥d_{u} than has been previously appreciated.
Collapse
Affiliation(s)
- James D Sartor
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| | - Sean A Ridout
- Department of Physics and Astronomy University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Eric I Corwin
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
14
|
Díaz Hernández Rojas R, Parisi G, Ricci-Tersenghi F. Inferring the particle-wise dynamics of amorphous solids from the local structure at the jamming point. SOFT MATTER 2021; 17:1056-1083. [PMID: 33326511 DOI: 10.1039/c9sm02283j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Jamming is a phenomenon shared by a wide variety of systems, such as granular materials, foams, and glasses in their high density regime. This has motivated the development of a theoretical framework capable of explaining many of their static critical properties with a unified approach. However, the dynamics occurring in the vicinity of the jamming point has received little attention and the problem of finding a connection with the local structure of the configuration remains unexplored. Here we address this issue by constructing physically well defined structural variables using the information contained in the network of contacts of jammed configurations, and then showing that such variables yield a resilient statistical description of the particle-wise dynamics near this critical point. Our results are based on extensive numerical simulations of systems of spherical particles that allow us to statistically characterize the trajectories of individual particles in terms of their first two moments. We first demonstrate that, besides displaying a broad distribution of mobilities, particles may also have preferential directions of motion. Next, we associate each of these features with a structural variable computed uniquely in terms of the contact vectors at jamming, obtaining considerably high statistical correlations. The robustness of our approach is confirmed by testing two types of dynamical protocols, namely molecular dynamics and Monte Carlo, with different types of interaction. We also provide evidence that the dynamical regime we study here is dominated by anharmonic effects and therefore it cannot be described properly in terms of vibrational modes. Finally, we show that correlations decay slowly and in an interaction-independent fashion, suggesting a universal rate of information loss.
Collapse
|
15
|
Tuckman PJ, VanderWerf K, Yuan Y, Zhang S, Zhang J, Shattuck MD, O'Hern CS. Contact network changes in ordered and disordered disk packings. SOFT MATTER 2020; 16:9443-9455. [PMID: 32940321 PMCID: PMC9118336 DOI: 10.1039/d0sm01137a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We investigate the mechanical response of packings of purely repulsive, frictionless disks to quasistatic deformations. The deformations include simple shear strain at constant packing fraction and at constant pressure, "polydispersity" strain (in which we change the particle size distribution) at constant packing fraction and at constant pressure, and isotropic compression. For each deformation, we show that there are two classes of changes in the interparticle contact networks: jump changes and point changes. Jump changes occur when a contact network becomes mechanically unstable, particles "rearrange", and the potential energy (when the strain is applied at constant packing fraction) or enthalpy (when the strain is applied at constant pressure) and all derivatives are discontinuous. During point changes, a single contact is either added to or removed from the contact network. For repulsive linear spring interactions, second- and higher-order derivatives of the potential energy/enthalpy are discontinuous at a point change, while for Hertzian interactions, third- and higher-order derivatives of the potential energy/enthalpy are discontinuous. We illustrate the importance of point changes by studying the transition from a hexagonal crystal to a disordered crystal induced by applying polydispersity strain. During this transition, the system only undergoes point changes, with no jump changes. We emphasize that one must understand point changes, as well as jump changes, to predict the mechanical properties of jammed packings.
Collapse
Affiliation(s)
- Philip J Tuckman
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Kyle VanderWerf
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Ye Yuan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China. and Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Shiyun Zhang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Jerry Zhang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Mark D Shattuck
- Benjamin Levich Institute and Physics Department, The City College of New York, New York, New York 10031, USA
| | - Corey S O'Hern
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA and Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA and Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA. and Graduate Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|