1
|
Fritsch B, Lee S, Körner A, Schneider NM, Ross FM, Hutzler A. The Influence of Ionizing Radiation on Quantification for In Situ and Operando Liquid-Phase Electron Microscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415728. [PMID: 39981755 PMCID: PMC11962711 DOI: 10.1002/adma.202415728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/27/2025] [Indexed: 02/22/2025]
Abstract
The ionizing radiation harnessed in electron microscopes or synchrotrons enables unique insights into nanoscale dynamics. In liquid-phase transmission electron microscopy (LP-TEM), irradiating a liquid sample with electrons offers access to real space information at an unmatched combination of temporal and spatial resolution. However, employing ionizing radiation for imaging can alter the Gibbs free energy landscape during the experiment. This is mainly due to radiolysis and the corresponding shift in chemical potential; however, experiments can also be affected by irradiation-induced charging and heating. In this review, the state of the art in describing beam effects is summarized, theoretical and experimental assessment guidelines are provided, and strategies to obtain quantitative information under such conditions are discussed. While this review showcases these effects on LP-TEM, the concepts that are discussed here can also be applied to other types of ionizing radiation used to probe liquid samples, such as synchrotron X-rays.
Collapse
Affiliation(s)
- Birk Fritsch
- Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IET‐2)Forschungszentrum Jülich GmbHCauerstr. 191058ErlangenGermany
| | - Serin Lee
- Department of Materials Science and EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
| | - Andreas Körner
- Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IET‐2)Forschungszentrum Jülich GmbHCauerstr. 191058ErlangenGermany
- Department of Chemical and Biological EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergImmerwahrstraße 2a91054ErlangenGermany
| | | | - Frances M. Ross
- Department of Materials Science and EngineeringMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA02139USA
| | - Andreas Hutzler
- Helmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IET‐2)Forschungszentrum Jülich GmbHCauerstr. 191058ErlangenGermany
| |
Collapse
|
2
|
Van Vu T, Hayakawa H. Thermomajorization Mpemba Effect. PHYSICAL REVIEW LETTERS 2025; 134:107101. [PMID: 40153644 DOI: 10.1103/physrevlett.134.107101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/06/2025] [Indexed: 03/30/2025]
Abstract
The Mpemba effect is a counterintuitive physical phenomenon where a hot system cools faster than a warm one. In recent years, theoretical analyses of the Mpemba effect have been developed for microscopic systems and experimentally verified. However, the conventional theory relies on a specific choice of distance measure to quantify relaxation speed, leading to several theoretical ambiguities. In this Letter, we derive a rigorous quantification of the Mpemba effect based on thermomajorization theory, referred to as the thermomajorization Mpemba effect. This approach resolves all existing ambiguities and provides a unification of the conventional Mpemba effect across all monotone measures. Furthermore, we demonstrate the generality of the thermomajorization Mpemba effect for Markovian dynamics, rigorously proving that it can occur in any temperature regime with fixed energy levels.
Collapse
Affiliation(s)
- Tan Van Vu
- Yukawa Institute for Theoretical Physics, Center for Gravitational Physics and Quantum Information, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Center for Gravitational Physics and Quantum Information, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Meibohm J, Klapp SHL. Exponential Change of Relaxation Rate by Quenched Disorder. PHYSICAL REVIEW LETTERS 2025; 134:087101. [PMID: 40085865 DOI: 10.1103/physrevlett.134.087101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/25/2024] [Accepted: 01/22/2025] [Indexed: 03/16/2025]
Abstract
We determine the asymptotic relaxation rate of a Brownian particle in a harmonic potential perturbed by quenched Gaussian disorder, a simplified model for rugged energy landscapes in complex systems. Depending on the properties of the disorder, we show that the mean and variance of the asymptotic relaxation rate are nonmonotonous functions of the parameters for a broad class of disorders. In particular, the rate of relaxation may either increase or decrease exponentially compared to the unperturbed case. This implies that disorder may, depending on its properties, both significantly speed up and slow down relaxation. In the limit of weak disorder, we derive the probability distribution of the asymptotic relaxation rate and show that it is Gaussian, with analytic expressions for the mean and variance that feature universal limits. Our findings indicate that controlled disorder may serve to tune the relaxation speed in complex systems.
Collapse
Affiliation(s)
- Jan Meibohm
- Technische Universität Berlin, Institut für Theoretische Physik, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Sabine H L Klapp
- Technische Universität Berlin, Institut für Theoretische Physik, Hardenbergstraße 36, 10623 Berlin, Germany
| |
Collapse
|
4
|
Biswas A, Rajesh R. Mpemba effect in the relaxation of an active Brownian particle in a trap without metastable states. J Chem Phys 2025; 162:034115. [PMID: 39817579 DOI: 10.1063/5.0246857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/24/2024] [Indexed: 01/18/2025] Open
Abstract
We explore the role of activity in the occurrence of the Mpemba effect within a system of an active colloid diffusing in a potential landscape devoid of metastable minimum. The Mpemba effect is characterized by a phenomenon where a hotter system reaches equilibrium quicker than a colder one when both are rapidly cooled to the same low temperature. While a minimal asymmetry in the potential landscape is crucial for observing this effect in passive colloidal systems, the introduction of activity can either amplify or reduce the threshold of this minimal asymmetry, resulting in the activity-induced and suppressed Mpemba effect. We attribute these variations in the Mpemba effect to the effective translational shift in the phase boundaries, which occurs as activity is changed.
Collapse
Affiliation(s)
- Apurba Biswas
- Laboratoire Ondes et Matière d'Aquitaine, CNRS, UMR 5798, Université de Bordeaux, F-33400 Talence, France
| | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
5
|
Sanders J, Baldovin M, Muratore-Ginanneschi P. Optimal Control of Underdamped Systems: An Analytic Approach. JOURNAL OF STATISTICAL PHYSICS 2024; 191:117. [PMID: 39301104 PMCID: PMC11408580 DOI: 10.1007/s10955-024-03320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/04/2024] [Indexed: 09/22/2024]
Abstract
Optimal control theory deals with finding protocols to steer a system between assigned initial and final states, such that a trajectory-dependent cost function is minimized. The application of optimal control to stochastic systems is an open and challenging research frontier, with a spectrum of applications ranging from stochastic thermodynamics to biophysics and data science. Among these, the design of nanoscale electronic components motivates the study of underdamped dynamics, leading to practical and conceptual difficulties. In this work, we develop analytic techniques to determine protocols steering finite time transitions at a minimum thermodynamic cost for stochastic underdamped dynamics. As cost functions, we consider two paradigmatic thermodynamic indicators. The first is the Kullback-Leibler divergence between the probability measure of the controlled process and that of a reference process. The corresponding optimization problem is the underdamped version of the Schrödinger diffusion problem that has been widely studied in the overdamped regime. The second is the mean entropy production during the transition, corresponding to the second law of modern stochastic thermodynamics. For transitions between Gaussian states, we show that optimal protocols satisfy a Lyapunov equation, a central tool in stability analysis of dynamical systems. For transitions between states described by general Maxwell-Boltzmann distributions, we introduce an infinite-dimensional version of the Poincaré-Lindstedt multiscale perturbation theory around the overdamped limit. This technique fundamentally improves the standard multiscale expansion. Indeed, it enables the explicit computation of momentum cumulants, whose variation in time is a distinctive trait of underdamped dynamics and is directly accessible to experimental observation. Our results allow us to numerically study cost asymmetries in expansion and compression processes and make predictions for inertial corrections to optimal protocols in the Landauer erasure problem at the nanoscale.
Collapse
Affiliation(s)
- Julia Sanders
- Department of Mathematics and Statistics, University of Helsinki, 00014 Helsinki, Finland
| | | | | |
Collapse
|
6
|
Longhi S. Photonic Mpemba effect. OPTICS LETTERS 2024; 49:5188-5191. [PMID: 39270260 DOI: 10.1364/ol.532503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
The Mpemba effect (ME) is the counterintuitive phenomenon in statistical physics for which a far-from-equilibrium state can relax toward equilibrium faster than a state closer to equilibrium. This effect has raised great curiosity for a long time and has been studied extensively in many classical and quantum systems. Here, it is shown that the Mpemba effect can be observed in optics as well. Specifically, the process of light diffusion in finite-sized photonic lattices under incoherent (dephasing) dynamics is considered. Rather surprisingly, it is shown that certain highly localized initial light distributions can diffuse faster than initial broadly delocalized distributions. The effect is illustrated by considering the random walk of optical pulses in fiber-based temporal mesh lattices, which should provide an experimentally accessible setup for the demonstration of the Mpemba effect in optics.
Collapse
|
7
|
Dieball C, Godec A. Thermodynamic Bounds on Generalized Transport: From Single-Molecule to Bulk Observables. PHYSICAL REVIEW LETTERS 2024; 133:067101. [PMID: 39178466 DOI: 10.1103/physrevlett.133.067101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/29/2024] [Accepted: 07/11/2024] [Indexed: 08/25/2024]
Abstract
We prove that the transport of any differentiable scalar observable in d-dimensional nonequilibrium systems is bounded from above by the total entropy production scaled by the amount the observation "stretches" microscopic coordinates. The result-a time-integrated generalized speed limit-reflects the thermodynamic cost of transport of observables, and places underdamped and overdamped stochastic dynamics on equal footing with deterministic motion. Our work allows for stochastic thermodynamics to make contact with bulk experiments, and fills an important gap in thermodynamic inference, since microscopic dynamics is, at least for short times, underdamped. Requiring only averages but not sample-to-sample fluctuations, the proven transport bound is practical and applicable not only to single-molecule but also bulk experiments where only averages are observed, which we demonstrate by examples. Our results may facilitate thermodynamic inference on molecular machines without an obvious directionality from bulk observations of transients probed, e.g., in time-resolved x-ray scattering.
Collapse
|
8
|
Netz RR. Derivation of the nonequilibrium generalized Langevin equation from a time-dependent many-body Hamiltonian. Phys Rev E 2024; 110:014123. [PMID: 39160956 DOI: 10.1103/physreve.110.014123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 06/20/2024] [Indexed: 08/21/2024]
Abstract
It has become standard practice to describe systems that remain far from equilibrium even in their steady state by Langevin equations with colored noise which is chosen independently from the friction contribution. Since these Langevin equations are typically not derived from first-principle Hamiltonian dynamics, it is not clear whether they correspond to physically realizable scenarios. By exact Mori projection in phase space we derive the nonequilibrium generalized Langevin equation (GLE) for an arbitrary phase-space dependent observable A from a generic many-body Hamiltonian with a time-dependent external force h(t) acting on the same observable A. This is the same Hamiltonian from which the standard fluctuation-dissipation theorem is derived, which reflects the generality of our approach. The observable A could, for example, be the position of an atom, of a molecule or of a macroscopic object, the distance between two such entities or a more complex phase-space function such as the reaction coordinate of a chemical reaction or of the folding of a protein. The Hamiltonian could, for example, describe a fluid, a solid, a viscoelastic medium, or even a turbulent inhomogeneous environment. The GLE, which is a closed-form equation of motion for the observable A, is obtained in explicit form to all orders in h(t) and without restrictions on the type of many-body Hamiltonian or the observable A. If the dynamics of the observable A corresponds to a Gaussian process, the resultant GLE has a similar form as the equilibrium Mori GLE, and in particular the friction memory kernel is given by the two-point autocorrelation function of the sum of the complementary and the external force h(t). This is a nontrivial and useful result, as many observables that characterize nonequilibrium systems display Gaussian statistics. For non-Gaussian nonequilibrium observables correction terms appear in the GLE and in the relation between the force autocorrelation and the friction memory kernel, which are explicitly given in terms of cubic correlation functions of A. Interpreting the external force h(t) as a stochastic process, we derive nonequilibrium corrections to the fluctuation-dissipation theorem and present methods to extract all GLE parameters from experimental or simulation time-series data, thus making our nonequilibrium GLE a practical tool to study and model general nonequilibrium systems.
Collapse
|
9
|
Rose M, Manikandan SK. Role of interactions in nonequilibrium transformations. Phys Rev E 2024; 109:044136. [PMID: 38755940 DOI: 10.1103/physreve.109.044136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/28/2024] [Indexed: 05/18/2024]
Abstract
For arbitrary nonequilibrium transformations in complex systems, we show that the distance between the current state and a target state can be decomposed into two terms: one corresponding to an independent estimate of the distance, and another corresponding to interactions, quantified using the relative mutual information between the variables. This decomposition is a special case of a more general decomposition involving successive orders of correlation or interactions among the degrees of freedom of the system. To illustrate its practical significance, we study the thermal relaxation of two interacting, optically trapped colloidal particles, where increasing pairwise interaction strength is shown to prolong the longevity of the time-dependent nonequilibrium state. Additionally, we study a system with both pairwise and triplet interactions, where our approach identifies their distinct contributions to the transformation. In more general setups where it is possible to control the strength of different orders of interactions, our findings provide a way to disentangle their effects and identify interactions that facilitate the transformation.
Collapse
Affiliation(s)
- Maria Rose
- School of Pure and Applied Physics, Mahatma Gandhi University, 686560 Kottayam, India
| | - Sreekanth K Manikandan
- NORDITA, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, 10691 Stockholm, Sweden and Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
10
|
Santos A. Mpemba meets Newton: Exploring the Mpemba and Kovacs effects in the time-delayed cooling law. Phys Rev E 2024; 109:044149. [PMID: 38755857 DOI: 10.1103/physreve.109.044149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/01/2024] [Indexed: 05/18/2024]
Abstract
Despite extensive research, the fundamental physical mechanisms underlying the Mpemba effect, a phenomenon where a substance cools faster after initially being heated, remain elusive. Although historically linked with water, the Mpemba effect manifests across diverse systems, sparking heightened interest in Mpemba-like phenomena. Concurrently, the Kovacs effect, a memory phenomenon observed in materials such as polymers, involves rapid quenching and subsequent temperature changes, resulting in nonmonotonic relaxation behavior. This paper probes the intricacies of the Mpemba and Kovacs effects within the framework of the time-delayed Newton's law of cooling, recognized as a simplistic yet effective phenomenological model accommodating memory phenomena. This law allows for a nuanced comprehension of temperature variations, introducing a delay time (τ) and incorporating specific protocols for the thermal bath temperature, contingent on a defined waiting time (t_{w}). Remarkably, the relevant parameter space is two-dimensional (τ and t_{w}), with bath temperatures exerting no influence on the presence or absence of the Mpemba effect or on the relative strength of the Kovacs effect. The findings enhance our understanding of these memory phenomena, providing valuable insights applicable to researchers across diverse fields, ranging from physics to materials science.
Collapse
Affiliation(s)
- Andrés Santos
- Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006 Badajoz, Spain
| |
Collapse
|
11
|
Pemartín IGA, Mompó E, Lasanta A, Martín-Mayor V, Salas J. Shortcuts of Freely Relaxing Systems Using Equilibrium Physical Observables. PHYSICAL REVIEW LETTERS 2024; 132:117102. [PMID: 38563945 DOI: 10.1103/physrevlett.132.117102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/15/2023] [Accepted: 01/18/2024] [Indexed: 04/04/2024]
Abstract
Many systems, when initially placed far from equilibrium, exhibit surprising behavior in their attempt to equilibrate. Striking examples are the Mpemba effect and the cooling-heating asymmetry. These anomalous behaviors can be exploited to shorten the time needed to cool down (or heat up) a system. Though, a strategy to design these effects in mesoscopic systems is missing. We bring forward a description that allows us to formulate such strategies, and, along the way, makes natural these paradoxical behaviors. In particular, we study the evolution of macroscopic physical observables of systems freely relaxing under the influence of one or two instantaneous thermal quenches. The two crucial ingredients in our approach are timescale separation and a nonmonotonic temperature evolution of an important state function. We argue that both are generic features near a first-order transition. Our theory is exemplified with the one-dimensional Ising model in a magnetic field using analytic results and numerical experiments.
Collapse
Affiliation(s)
| | - Emanuel Mompó
- Departamento de Matemática Aplicada, Grupo de Dinámica No Lineal, Universidad Pontificia Comillas, Alberto Aguilera 25, 28015 Madrid, Spain
- Instituto de Investigación Tecnológica (IIT), Universidad Pontificia Comillas, 28015 Madrid, Spain
| | - Antonio Lasanta
- Departamento de Álgebra, Facultad de Educación, Economía y Tecnología de Ceuta, Universidad de Granada, Cortadura del Valle, s/n, 51001 Ceuta, Spain
- Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada, Spain
- Nanoparticles Trapping Laboratory, Universidad de Granada, Granada, Spain
| | - Víctor Martín-Mayor
- Departamento de Física Teórica, Universidad Complutense, 28040 Madrid, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018 Zaragoza, Spain
| | - Jesús Salas
- Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganés, Spain
- Grupo de Teorías de Campos y Física Estadística, Instituto Gregorio Millán, Universidad Carlos III de Madrid, Unidad Asociada al Instituto de Estructura de la Materia, CSIC, Spain
| |
Collapse
|
12
|
Biswas A, Rajesh R. Mpemba effect for a Brownian particle trapped in a single well potential. Phys Rev E 2023; 108:024131. [PMID: 37723739 DOI: 10.1103/physreve.108.024131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/03/2023] [Indexed: 09/20/2023]
Abstract
The Mpemba effect refers to the counterintuitive phenomenon of a hotter system equilibrating faster than a colder system when both are quenched to the same low temperature. For a Brownian particle trapped in a piecewise linear single well potential that is devoid of any other metastable minima, we show the existence of the Mpemba effect for a wide range of parameters through an exact solution. This result challenges the prevalent explanation of the Mpemba effect that requires the energy landscape to be rugged with multiple minima. We also demonstrate the existence of inverse and strong Mpemba effects.
Collapse
Affiliation(s)
- Apurba Biswas
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
13
|
Biswas A, Prasad VV, Rajesh R. Mpemba effect in driven granular gases: Role of distance measures. Phys Rev E 2023; 108:024902. [PMID: 37723801 DOI: 10.1103/physreve.108.024902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/25/2023] [Indexed: 09/20/2023]
Abstract
The Mpemba effect refers to the counterintuitive effect where a system which is initially further from the final steady state equilibrates faster than an identical system that is initially closer. The closeness to the final state is defined in terms of a distance measure. For driven granular systems, the Mpemba effect has been illustrated in terms of an ad hoc measure of mean kinetic energy as the distance function. In this paper, by studying four different distance measures based on the mean kinetic energies as well as velocity distribution, we show that the Mpemba effect depends on the definition of the measures.
Collapse
Affiliation(s)
- Apurba Biswas
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - V V Prasad
- Department of Physics, Cochin University of Science and Technology, Kochi 682022, India
| | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
14
|
Biswas A, Rajesh R, Pal A. Mpemba effect in a Langevin system: Population statistics, metastability, and other exact results. J Chem Phys 2023; 159:044120. [PMID: 37522403 DOI: 10.1063/5.0155855] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
The Mpemba effect is a fingerprint of the anomalous relaxation phenomenon wherein an initially hotter system equilibrates faster than an initially colder system when both are quenched to the same low temperature. Experiments on a single colloidal particle trapped in a carefully shaped double well potential have demonstrated this effect recently [A. Kumar and J. Bechhoefer, Nature 584, 64 (2020)]. In a similar vein, here, we consider a piece-wise linear double well potential that allows us to demonstrate the Mpemba effect using an exact analysis based on the spectral decomposition of the corresponding Fokker-Planck equation. We elucidate the role of the metastable states in the energy landscape as well as the initial population statistics of the particles in showcasing the Mpemba effect. Crucially, our findings indicate that neither the metastability nor the asymmetry in the potential is a necessary or a sufficient condition for the Mpemba effect to be observed.
Collapse
Affiliation(s)
- Apurba Biswas
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Arnab Pal
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
15
|
Teza G, Yaacoby R, Raz O. Relaxation Shortcuts through Boundary Coupling. PHYSICAL REVIEW LETTERS 2023; 131:017101. [PMID: 37478423 DOI: 10.1103/physrevlett.131.017101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/06/2022] [Accepted: 05/17/2023] [Indexed: 07/23/2023]
Abstract
When a hot system cools down faster than an equivalent cold one, it exhibits the Mpemba effect (ME). This counterintuitive phenomenon was observed in several systems including water, magnetic alloys, and polymers. In most experiments the system is coupled to the bath through its boundaries, but all theories so far assumed bulk coupling. Here we build a general framework to characterize anomalous relaxations through boundary coupling, and present two emblematic setups: a diffusing particle and an Ising antiferromagnet. In the latter, we show that the ME can survive even arbitrarily weak couplings.
Collapse
Affiliation(s)
- Gianluca Teza
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ran Yaacoby
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Oren Raz
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
16
|
Teza G, Yaacoby R, Raz O. Eigenvalue Crossing as a Phase Transition in Relaxation Dynamics. PHYSICAL REVIEW LETTERS 2023; 130:207103. [PMID: 37267560 DOI: 10.1103/physrevlett.130.207103] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/07/2023] [Indexed: 06/04/2023]
Abstract
When a system's parameter is abruptly changed, a relaxation toward the new equilibrium of the system follows. We show that a crossing between the second and third eigenvalues of the relaxation operator results in a singularity in the dynamics analogous to a first-order equilibrium phase transition. While dynamical phase transitions are intrinsically hard to detect in nature, here we show how this kind of transition can be observed in an experimentally feasible four-state colloidal system. Finally, analytical proof of survival in the thermodynamic limit of a many body (1D Ising) model is provided.
Collapse
Affiliation(s)
- Gianluca Teza
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ran Yaacoby
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Oren Raz
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
17
|
Dieball C, Godec A. Direct Route to Thermodynamic Uncertainty Relations and Their Saturation. PHYSICAL REVIEW LETTERS 2023; 130:087101. [PMID: 36898097 DOI: 10.1103/physrevlett.130.087101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/23/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Thermodynamic uncertainty relations (TURs) bound the dissipation in nonequilibrium systems from below by fluctuations of an observed current. Contrasting the elaborate techniques employed in existing proofs, we here prove TURs directly from the Langevin equation. This establishes the TUR as an inherent property of overdamped stochastic equations of motion. In addition, we extend the transient TUR to currents and densities with explicit time dependence. By including current-density correlations we, moreover, derive a new sharpened TUR for transient dynamics. Our arguably simplest and most direct proof, together with the new generalizations, allows us to systematically determine conditions under which the different TURs saturate and thus allows for a more accurate thermodynamic inference. Finally, we outline the direct proof also for Markov jump dynamics.
Collapse
Affiliation(s)
- Cai Dieball
- Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen
| | - Aljaž Godec
- Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen
| |
Collapse
|
18
|
Dasari DBR. Thermodynamics of Quantum Spin-Bath Depolarization. ENTROPY (BASEL, SWITZERLAND) 2023; 25:340. [PMID: 36832706 PMCID: PMC9955735 DOI: 10.3390/e25020340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
We analyze here through exact calculations the thermodynamical effects in depolarizing a quantum spin-bath initially at zero temperature through a quantum probe coupled to an infinite temperature bath by evaluating the heat and entropy changes. We show that the correlations induced in the bath during the depolarizing process does not allow for the entropy of the bath to increase towards its maximal limit. On the contrary, the energy deposited in the bath can be completely extracted in a finite time. We explore these findings through an exactly solvable central spin model, wherein a central spin-1/2 system is homogeneously coupled to a bath of identical spins. Further, we show that, upon destroying these unwanted correlations, we boost the rate of both energy extraction and entropy towards their limiting values. We envisage that these studies are relevant for quantum battery research wherein both charging and discharging processes are key to characterizing the battery performance.
Collapse
|
19
|
Dieball C, Godec A. Mathematical, Thermodynamical, and Experimental Necessity for Coarse Graining Empirical Densities and Currents in Continuous Space. PHYSICAL REVIEW LETTERS 2022; 129:140601. [PMID: 36240401 DOI: 10.1103/physrevlett.129.140601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 06/16/2023]
Abstract
We present general results on fluctuations and spatial correlations of the coarse-grained empirical density and current of Markovian diffusion in equilibrium or nonequilibrium steady states on all timescales. We unravel a deep connection between current fluctuations and generalized time-reversal symmetry, providing new insight into time-averaged observables. We highlight the essential role of coarse graining in space from mathematical, thermodynamical, and experimental points of view. Spatial coarse graining is required to uncover salient features of currents that break detailed balance, and a thermodynamically "optimal" coarse graining ensures the most precise inference of dissipation. Defined without coarse graining, the fluctuations of empirical density and current are proven to diverge on all timescales in dimensions higher than one, which has far-reaching consequences for the central-limit regime in continuous space. We apply the results to examples of irreversible diffusion. Our findings provide new intuition about time-averaged observables and allow for a more efficient analysis of single-molecule experiments.
Collapse
Affiliation(s)
- Cai Dieball
- Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen
| | - Aljaž Godec
- Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen
| |
Collapse
|
20
|
Megías A, Santos A, Prados A. Thermal versus entropic Mpemba effect in molecular gases with nonlinear drag. Phys Rev E 2022; 105:054140. [PMID: 35706208 DOI: 10.1103/physreve.105.054140] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Loosely speaking, the Mpemba effect appears when hotter systems cool sooner or, in a more abstract way, when systems further from equilibrium relax faster. In this paper, we investigate the Mpemba effect in a molecular gas with nonlinear drag, both analytically (by employing the tools of kinetic theory) and numerically (direct simulation Monte Carlo of the kinetic equation and event-driven molecular dynamics). The analysis is carried out via two alternative routes, recently considered in the literature: first, the kinetic or thermal route, in which the Mpemba effect is characterized by the crossing of the evolution curves of the kinetic temperature (average kinetic energy), and, second, the stochastic thermodynamics or entropic route, in which the Mpemba effect is characterized by the crossing of the distance to equilibrium in probability space. In general, a nonmutual correspondence between the thermal and entropic Mpemba effects is found, i.e., there may appear the thermal effect without its entropic counterpart or vice versa. Furthermore, a nontrivial overshoot with respect to equilibrium of the thermal relaxation makes it necessary to revise the usual definition of the thermal Mpemba effect, which is shown to be better described in terms of the relaxation of the local equilibrium distribution. Our theoretical framework, which involves an extended Sonine approximation in which not only the excess kurtosis but also the sixth cumulant is retained, gives an excellent account of the behavior observed in simulations.
Collapse
Affiliation(s)
- Alberto Megías
- Departamento de Física, Universidad de Extremadura, E-06006 Badajoz, Spain
| | - Andrés Santos
- Departamento de Física, Universidad de Extremadura, E-06006 Badajoz, Spain and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006 Badajoz, Spain
| | - Antonio Prados
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| |
Collapse
|
21
|
Żuk PJ, Makuch K, Hołyst R, Maciołek A. Transient dynamics in the outflow of energy from a system in a nonequilibrium stationary state. Phys Rev E 2022; 105:054133. [PMID: 35706157 DOI: 10.1103/physreve.105.054133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/30/2022] [Indexed: 06/15/2023]
Abstract
We investigate the thermal relaxation of an ideal gas from a nonequilibrium stationary state. The gas is enclosed between two walls, which initially have different temperatures. After making one of the walls adiabatic, the system returns to equilibrium. We notice two distinct modes of heat transport and associated timescales: one connected with a traveling heat front and the other with internal energy diffusion. At the heat front, which moves at the speed of sound, pressure, temperature, and density change abruptly, leaving lower values behind. This is unlike a shock wave, a sound wave, or a thermal wave. The front moves multiple times between the walls and is the dominant heat transport mode until surpassed by diffusion. We found that it can constitute an order 1 factor in shaping the dynamics of the outflow of internal energy. We found that cooling such a system is quicker than heating, and that hotter bodies cool down quicker than colder ones. The latter is known as the Mpemba effect.
Collapse
Affiliation(s)
- Paweł J Żuk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, PL-01-224 Warsaw, Poland
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Karol Makuch
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, PL-01-224 Warsaw, Poland
| | - Robert Hołyst
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, PL-01-224 Warsaw, Poland
| | - Anna Maciołek
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, PL-01-224 Warsaw, Poland
- Max-Planck-Institut für Intelligente Systeme Stuttgart, Heisenbergstrasse 3, D-70569 Stuttgart, Germany
| |
Collapse
|
22
|
Kumar A, Chétrite R, Bechhoefer J. Anomalous heating in a colloidal system. Proc Natl Acad Sci U S A 2022; 119:e2118484119. [PMID: 35078935 PMCID: PMC8812517 DOI: 10.1073/pnas.2118484119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
We report anomalous heating in a colloidal system, an experimental observation of the inverse Mpemba effect, where for two initial temperatures lower than the temperature of the thermal bath, the colder of the two systems heats up faster when coupled to the same thermal bath. For an overdamped, Brownian colloidal particle moving in a tilted double-well potential, we find a nonmonotonic dependence of the heating times on the initial temperature of the system. Entropic effects make the inverse Mpemba effect generically weaker-harder to observe-than the usual Mpemba effect (anomalous cooling). We also observe a strong version of anomalous heating, where a cold system heats up exponentially faster than systems prepared under slightly different conditions.
Collapse
Affiliation(s)
- Avinash Kumar
- Department of Physics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Raphaël Chétrite
- Laboratoire J. A. Dieudonné, UMR CNRS 7351, Université de Nice Sophia Antipolis, 06108 Nice, France
| | - John Bechhoefer
- Department of Physics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| |
Collapse
|
23
|
Ruiz-Pino N, Prados A. Optimal Control of Uniformly Heated Granular Fluids in Linear Response. ENTROPY (BASEL, SWITZERLAND) 2022; 24:131. [PMID: 35052157 PMCID: PMC8774495 DOI: 10.3390/e24010131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023]
Abstract
We present a detailed analytical investigation of the optimal control of uniformly heated granular gases in the linear regime. The intensity of the stochastic driving is therefore assumed to be bounded between two values that are close, which limits the possible values of the granular temperature to a correspondingly small interval. Specifically, we are interested in minimising the connection time between the non-equilibrium steady states (NESSs) for two different values of the granular temperature by controlling the time dependence of the driving intensity. The closeness of the initial and target NESSs make it possible to linearise the evolution equations and rigorously-from a mathematical point of view-prove that the optimal controls are of bang-bang type, with only one switching in the first Sonine approximation. We also look into the dependence of the optimal connection time on the bounds of the driving intensity. Moreover, the limits of validity of the linear regime are investigated.
Collapse
Affiliation(s)
| | - Antonio Prados
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain;
| |
Collapse
|
24
|
Lin J, Li K, He J, Ren J, Wang J. Power statistics of Otto heat engines with the Mpemba effect. Phys Rev E 2022; 105:014104. [PMID: 35193214 DOI: 10.1103/physreve.105.014104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 12/14/2021] [Indexed: 01/13/2023]
Abstract
The Mpemba effect is a counterintuitive relaxation phenomenon whereby a system with a higher initial temperature may cool down to the thermal state faster than an identical system that was initially prepared at a lower temperature. Here, we investigate heat and work in a Markovian state transition system with cyclic switching hot-cold temperatures, which operates as an Otto heat engine working in long but finite time, either with or without the Mpemba effect. Under the condition of the periodic steady state having been reached, the time durations of the heating and cooling relaxation processes are determined by exploring a distance-from-equilibrium equivalent to the Kullback-Leibler divergence. We then numerically evaluate and compare the averages and variances of both the work and the power output of two scenarios with and without the Mpemba effect. The results show that the Markovian Mpemba effect can enhance the machine performance by significantly increasing the power output for a given efficiency without sacrificing the stability.
Collapse
Affiliation(s)
- Jie Lin
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Kai Li
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Jizhou He
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Jie Ren
- Center for Phononics and Thermal Energy Science, China-EU Joint Lab on Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Sciences and Engineering, Tongji University, Shanghai 200092, China
| | - Jianhui Wang
- Department of Physics, Nanchang University, Nanchang 330031, China.,State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| |
Collapse
|
25
|
Araki T, Gomez-Solano JR, Maciołek A. Relaxation to steady states of a binary liquid mixture around an optically heated colloid. Phys Rev E 2022; 105:014123. [PMID: 35193287 DOI: 10.1103/physreve.105.014123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
We study the relaxation dynamics of a binary liquid mixture near a light-absorbing Janus particle after switching on and off illumination using experiments and theoretical models. The dynamics is controlled by the temperature gradient formed around the heated particle. Our results show that the relaxation is asymmetric: The approach to a nonequilibrium steady state is much slower than the return to thermal equilibrium. Approaching a nonequilibrium steady state after a sudden temperature change is a two-step process that overshoots the response of spatial variance of the concentration field. The initial growth of concentration fluctuations after switching on illumination follows a power law in agreement with the hydrodynamic and purely diffusive model. The energy outflow from the system after switching off illumination is well described by a stretched exponential function of time with characteristic time proportional to the ratio of the energy stored in the steady state to the total energy flux in this state.
Collapse
Affiliation(s)
- Takeaki Araki
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Juan Ruben Gomez-Solano
- Instituto de Física, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico, Código Postal 04510, Mexico
| | - Anna Maciołek
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, PL-01-224 Warsaw, Poland
- Max-Planck-Institut für Intelligente Systeme Stuttgart, Heisenbergstraße 3, D-70569 Stuttgart, Germany
| |
Collapse
|
26
|
Meibohm J, Forastiere D, Adeleke-Larodo T, Proesmans K. Relaxation-speed crossover in anharmonic potentials. Phys Rev E 2021; 104:L032105. [PMID: 34654171 DOI: 10.1103/physreve.104.l032105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/08/2021] [Indexed: 11/07/2022]
Abstract
In a recent Letter [A. Lapolla and A. Godec, Phys. Rev. Lett. 125, 110602 (2020)PRLTAO0031-900710.1103/PhysRevLett.125.110602], thermal relaxation was observed to occur faster from cold to hot (heating) than from hot to cold (cooling). Here we show that overdamped diffusion in anharmonic potentials generically exhibits both faster heating and faster cooling, depending on the initial temperatures and on the potential's degree of anharmonicity. We draw a relaxation-speed phase diagram that localizes the different behaviors in parameter space. In addition to faster-heating and faster-cooling regions, we identify a crossover region in the phase diagram, where heating is initially slower but asymptotically faster than cooling. The structure of the phase diagram is robust against the inclusion of a confining, harmonic term in the potential as well as moderate changes of the measure used to define initially equidistant temperatures.
Collapse
Affiliation(s)
- Jan Meibohm
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Danilo Forastiere
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Tunrayo Adeleke-Larodo
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Karel Proesmans
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg.,Hasselt University, B-3590 Diepenbeek, Belgium
| |
Collapse
|
27
|
Paściak A, Pilch-Wróbel A, Marciniak Ł, Schuck PJ, Bednarkiewicz A. Standardization of Methodology of Light-to-Heat Conversion Efficiency Determination for Colloidal Nanoheaters. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44556-44567. [PMID: 34498862 PMCID: PMC8461604 DOI: 10.1021/acsami.1c12409] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/25/2021] [Indexed: 05/17/2023]
Abstract
Localized photothermal therapy (PTT) has been demonstrated to be a promising method of combating cancer, that additionally synergistically enhances other treatment modalities such as photodynamic therapy or chemotherapy. PTT exploits nanoparticles (called nanoheaters), that upon proper biofunctionalization may target cancerous tissues, and under light stimulation may convert the energy of photons to heat, leading to local overheating and treatment of cancerous cells. Despite extensive work, there is, however, no agreement on how to accurately and quantitatively compare light-to-heat conversion efficiency (ηQ) and rank the nanoheating performances of various groups of nanomaterials. This disagreement is highly problematic because the obtained ηQ values, measured with various methods, differ significantly for similar nanomaterials. In this work, we experimentally review existing optical setups, methods, and physical models used to evaluate ηQ. In order to draw a binding conclusion, we cross-check and critically evaluate the same Au@SiO2 sample in various experimental conditions. This critical study let us additionally compare and understand the influence of the other experimental factors, such as stirring, data recording and analysis, and assumptions on the effective mass of the system, in order to determine ηQ in a most straightforward and reproducible way. Our goal is therefore to contribute to the understanding, standardization, and reliable evaluation of ηQ measurements, aiming to accurately rank various nanoheater platforms.
Collapse
Affiliation(s)
- Agnieszka Paściak
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland
| | - Aleksandra Pilch-Wróbel
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland
| | - Łukasz Marciniak
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland
| | - P. James Schuck
- Department
of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Artur Bednarkiewicz
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland
| |
Collapse
|
28
|
Liu T, Ou JY, Plum E, MacDonald KF, Zheludev NI. Visualization of Subatomic Movements in Nanostructures. NANO LETTERS 2021; 21:7746-7752. [PMID: 34469159 DOI: 10.1021/acs.nanolett.1c02644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electron microscopy, scanning probe, and optical super-resolution imaging techniques with nanometric resolution are now routinely available but cannot capture the characteristically fast (MHz-GHz frequency) movements of micro-/nano-objects. Meanwhile, optical interferometric techniques can detect high-frequency picometric displacements but only with diffraction-limited lateral resolution. Here, we introduce a motion visualization technique, based on the spectrally resolved detection of secondary electron emission from moving objects, that combines picometric displacement sensitivity with the nanometric spatial (positional/imaging) resolution of electron microscopy. The sensitivity of the technique is quantitatively validated against the thermodynamically defined amplitude of a nanocantilever's Brownian motion. It is further demonstrated in visualizing externally driven modes of cantilever, nanomechanical photonic metamaterial, and MEMS device structures. With a noise floor reaching ∼1 pm/Hz1/2, it can provide for the study of oscillatory movements with subatomic amplitudes, presenting new opportunities for the interrogation of motion in functional structures across the materials, bio- and nanosciences.
Collapse
Affiliation(s)
- Tongjun Liu
- Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Jun-Yu Ou
- Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Eric Plum
- Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Kevin F MacDonald
- Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Nikolay I Zheludev
- Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
- Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences and The Photonics Institute, Nanyang Technological University, Singapore 637378, Singapore
| |
Collapse
|
29
|
Fritsch B, Hutzler A, Wu M, Khadivianazar S, Vogl L, Jank MPM, März M, Spiecker E. Accessing local electron-beam induced temperature changes during in situ liquid-phase transmission electron microscopy. NANOSCALE ADVANCES 2021; 3:2466-2474. [PMID: 36134158 PMCID: PMC9419575 DOI: 10.1039/d0na01027h] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/18/2021] [Indexed: 05/26/2023]
Abstract
A significant electron-beam induced heating effect is demonstrated for liquid-phase transmission electron microscopy at low electron flux densities using Au nanoparticles as local nanothermometers. The obtained results are in agreement with theoretical considerations. Furthermore, the impact of beam-induced heating on radiolysis chemistry is estimated and the consequences of the effect are discussed.
Collapse
Affiliation(s)
- Birk Fritsch
- Electron Devices (LEB), Department of Electrical, Electronic and Communication Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU) Cauerstraße 6 91058 Erlangen Germany
| | - Andreas Hutzler
- Electron Devices (LEB), Department of Electrical, Electronic and Communication Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU) Cauerstraße 6 91058 Erlangen Germany
| | - Mingjian Wu
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Department of Materials Science and Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU) Cauerstraße 3 91058 Erlangen Germany
| | - Saba Khadivianazar
- Electron Devices (LEB), Department of Electrical, Electronic and Communication Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU) Cauerstraße 6 91058 Erlangen Germany
| | - Lilian Vogl
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Department of Materials Science and Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU) Cauerstraße 3 91058 Erlangen Germany
| | - Michael P M Jank
- Fraunhofer Institute for Integrated Systems and Device Technology IISB Schottkystraße 10 91058 Erlangen Germany
| | - Martin März
- Electron Devices (LEB), Department of Electrical, Electronic and Communication Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU) Cauerstraße 6 91058 Erlangen Germany
- Fraunhofer Institute for Integrated Systems and Device Technology IISB Schottkystraße 10 91058 Erlangen Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Department of Materials Science and Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU) Cauerstraße 3 91058 Erlangen Germany
| |
Collapse
|
30
|
Takada S, Hayakawa H, Santos A. Mpemba effect in inertial suspensions. Phys Rev E 2021; 103:032901. [PMID: 33862769 DOI: 10.1103/physreve.103.032901] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/10/2021] [Indexed: 11/07/2022]
Abstract
The Mpemba effect (a counterintuitive thermal relaxation process where an initially hotter system may cool down to the steady state sooner than an initially colder system) is studied in terms of a model of inertial suspensions under shear. The relaxation to a common steady state of a suspension initially prepared in a quasiequilibrium state is compared with that of a suspension initially prepared in a nonequilibrium sheared state. Two classes of Mpemba effect are identified, the normal and the anomalous one. The former is generic, in the sense that the kinetic temperature starting from a cold nonequilibrium sheared state is overtaken by the one starting from a hot quasiequilibrium state, due to the absence of initial viscous heating in the latter, resulting in a faster initial cooling. The anomalous Mpemba effect is opposite to the normal one since, despite the initial slower cooling of the nonequilibrium sheared state, it can eventually overtake an initially colder quasiequilibrium state. The theoretical results based on kinetic theory agree with those obtained from event-driven simulations for inelastic hard spheres. It is also confirmed the existence of the inverse Mpemba effect, which is a peculiar heating process, in these suspensions. More particularly, we find the existence of a mixed process in which both heating and cooling can be observed during relaxation.
Collapse
Affiliation(s)
- Satoshi Takada
- Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Andrés Santos
- Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06071 Badajoz, Spain
| |
Collapse
|
31
|
Lapolla A, Godec A. Single-file diffusion in a bi-stable potential: Signatures of memory in the barrier-crossing of a tagged-particle. J Chem Phys 2020; 153:194104. [PMID: 33218229 DOI: 10.1063/5.0025785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate memory effects in barrier-crossing in the overdamped setting. We focus on the scenario where the hidden degrees of freedom relax on exactly the same time scale as the observable. As a prototypical model, we analyze tagged-particle diffusion in a single file confined to a bi-stable potential. We identify the signatures of memory and explain their origin. The emerging memory is a result of the projection of collective many-body eigenmodes onto the motion of a tagged-particle. We are interested in the "confining" (all background particles in front of the tagged-particle) and "pushing" (all background particles behind the tagged-particle) scenarios for which we find non-trivial and qualitatively different relaxation behaviors. Notably and somewhat unexpectedly, at a fixed particle number, we find that the higher the barrier, the stronger the memory effects are. The fact that the external potential alters the memory is important more generally and should be taken into account in applications of generalized Langevin equations. Our results can readily be tested experimentally and may be relevant for understanding transport in biological ion-channels.
Collapse
Affiliation(s)
- Alessio Lapolla
- Mathematical bioPhysics Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Aljaž Godec
- Mathematical bioPhysics Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|