1
|
Miyagi T, Cao X, Seutin R, Bacca S, Ruiz RFG, Hebeler K, Holt JD, Schwenk A. Impact of Two-Body Currents on Magnetic Dipole Moments of Nuclei. PHYSICAL REVIEW LETTERS 2024; 132:232503. [PMID: 38905650 DOI: 10.1103/physrevlett.132.232503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/23/2024] [Accepted: 04/25/2024] [Indexed: 06/23/2024]
Abstract
We investigate the effects of two-body currents on magnetic dipole moments of medium-mass and heavy nuclei using the valence-space in-medium similarity renormalization group with chiral effective field theory interactions and currents. Focusing on near doubly magic nuclei from oxygen to bismuth, we have found that the leading two-body currents globally improve the agreement with experimental magnetic moments. Moreover, our results show the importance of multishell effects for ^{41}Ca, which suggest that the Z=N=20 gap in ^{40}Ca is not as robust as in ^{48}Ca. The increasing contribution of two-body currents in heavier systems is explained by the operator structure of the center-of-mass dependent Sachs term.
Collapse
Affiliation(s)
- T Miyagi
- Technische Universität Darmstadt, Department of Physics, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - X Cao
- Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080, USA
| | - R Seutin
- Technische Universität Darmstadt, Department of Physics, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - S Bacca
- Institute of Nuclear Physics, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
- PRISMA+ Cluster of Excellence, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - R F Garcia Ruiz
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - K Hebeler
- Technische Universität Darmstadt, Department of Physics, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - J D Holt
- TRIUMF, 4004 Wesbrook Mall, Vancouver British Columbia V6T 2A3, Canada
- Department of Physics, McGill University, Montréal, Quebec City H3A 2T8, Canada
| | - A Schwenk
- Technische Universität Darmstadt, Department of Physics, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| |
Collapse
|
2
|
Hu B, Jiang W, Miyagi T, Sun Z, Ekström A, Forssén C, Hagen G, Holt JD, Papenbrock T, Stroberg SR, Vernon I. Ab initio predictions link the neutron skin of 208Pb to nuclear forces. NATURE PHYSICS 2022; 18:1196-1200. [PMID: 36217363 PMCID: PMC9537109 DOI: 10.1038/s41567-022-01715-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/11/2022] [Indexed: 05/14/2023]
Abstract
Heavy atomic nuclei have an excess of neutrons over protons, which leads to the formation of a neutron skin whose thickness is sensitive to details of the nuclear force. This links atomic nuclei to properties of neutron stars, thereby relating objects that differ in size by orders of magnitude. The nucleus 208Pb is of particular interest because it exhibits a simple structure and is experimentally accessible. However, computing such a heavy nucleus has been out of reach for ab initio theory. By combining advances in quantum many-body methods, statistical tools and emulator technology, we make quantitative predictions for the properties of 208Pb starting from nuclear forces that are consistent with symmetries of low-energy quantum chromodynamics. We explore 109 different nuclear force parameterizations via history matching, confront them with data in select light nuclei and arrive at an importance-weighted ensemble of interactions. We accurately reproduce bulk properties of 208Pb and determine the neutron skin thickness, which is smaller and more precise than a recent extraction from parity-violating electron scattering but in agreement with other experimental probes. This work demonstrates how realistic two- and three-nucleon forces act in a heavy nucleus and allows us to make quantitative predictions across the nuclear landscape.
Collapse
Affiliation(s)
- Baishan Hu
- TRIUMF, Vancouver, British Columbia Canada
| | - Weiguang Jiang
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Takayuki Miyagi
- TRIUMF, Vancouver, British Columbia Canada
- Department of Physics, Technische Universität Darmstadt, Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Zhonghao Sun
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN USA
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Andreas Ekström
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Christian Forssén
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Gaute Hagen
- TRIUMF, Vancouver, British Columbia Canada
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN USA
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Jason D. Holt
- TRIUMF, Vancouver, British Columbia Canada
- Department of Physics, McGill University, Montreal, Quebec Canada
| | - Thomas Papenbrock
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN USA
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - S. Ragnar Stroberg
- Department of Physics, University of Washington, Seattle, WA USA
- Physics Division, Argonne National Laboratory, Lemont, IL USA
| | - Ian Vernon
- Department of Mathematical Sciences, Durham University, Durham, UK
| |
Collapse
|
4
|
Malbrunot-Ettenauer S, Kaufmann S, Bacca S, Barbieri C, Billowes J, Bissell ML, Blaum K, Cheal B, Duguet T, Ruiz RFG, Gins W, Gorges C, Hagen G, Heylen H, Holt JD, Jansen GR, Kanellakopoulos A, Kortelainen M, Miyagi T, Navrátil P, Nazarewicz W, Neugart R, Neyens G, Nörtershäuser W, Novario SJ, Papenbrock T, Ratajczyk T, Reinhard PG, Rodríguez LV, Sánchez R, Sailer S, Schwenk A, Simonis J, Somà V, Stroberg SR, Wehner L, Wraith C, Xie L, Xu ZY, Yang XF, Yordanov DT. Nuclear Charge Radii of the Nickel Isotopes ^{58-68,70}Ni. PHYSICAL REVIEW LETTERS 2022; 128:022502. [PMID: 35089728 DOI: 10.1103/physrevlett.128.022502] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/05/2021] [Accepted: 10/22/2021] [Indexed: 06/14/2023]
Abstract
Collinear laser spectroscopy is performed on the nickel isotopes ^{58-68,70}Ni, using a time-resolved photon counting system. From the measured isotope shifts, nuclear charge radii R_{c} are extracted and compared to theoretical results. Three ab initio approaches all employ, among others, the chiral interaction NNLO_{sat}, which allows an assessment of their accuracy. We find agreement with experiment in differential radii δ⟨r_{c}^{2}⟩ for all employed ab initio methods and interactions, while the absolute radii are consistent with data only for NNLO_{sat}. Within nuclear density functional theory, the Skyrme functional SV-min matches experiment more closely than the Fayans functional Fy(Δr,HFB).
Collapse
Affiliation(s)
| | - S Kaufmann
- Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
| | - S Bacca
- Institut für Kernphysik and PRISMA+ Cluster of Excellence, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany
| | - C Barbieri
- Department of Physics, University of Surrey, Guildford, GU2 7XH, United Kingdom
- Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy
- INFN, Sezione di Milano, Via Celoria 16, 20133 Milano, Italy
| | - J Billowes
- School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - M L Bissell
- School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - K Blaum
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
| | - B Cheal
- Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE, United Kingdom
| | - T Duguet
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
- KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium
| | - R F Garcia Ruiz
- Experimental Physics Department, CERN, CH-1211 Geneva 23, Switzerland
- School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - W Gins
- KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium
| | - C Gorges
- Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
| | - G Hagen
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - H Heylen
- Experimental Physics Department, CERN, CH-1211 Geneva 23, Switzerland
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
| | - J D Holt
- TRIUMF 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
- Department of Physics, McGill University, Montréal, Quebec H3A 2T8, Canada
| | - G R Jansen
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - A Kanellakopoulos
- KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium
| | - M Kortelainen
- Department of Physics, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 University of Jyväskylä, Finland
| | - T Miyagi
- TRIUMF 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - P Navrátil
- TRIUMF 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada
| | - W Nazarewicz
- Department of Physics and Astronomy and FRIB Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
| | - R Neugart
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
- Institut für Kernchemie, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany
| | - G Neyens
- Experimental Physics Department, CERN, CH-1211 Geneva 23, Switzerland
- KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium
| | - W Nörtershäuser
- Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
| | - S J Novario
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - T Papenbrock
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - T Ratajczyk
- Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
| | - P-G Reinhard
- Institut für Theoretische Physik II, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - L V Rodríguez
- Experimental Physics Department, CERN, CH-1211 Geneva 23, Switzerland
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
- Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay, France
| | - R Sánchez
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany
| | - S Sailer
- Technische Universität München, D-80333 München, Germany
| | - A Schwenk
- Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
- Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany
| | - J Simonis
- Institut für Kernphysik and PRISMA+ Cluster of Excellence, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany
| | - V Somà
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - S R Stroberg
- Department of Physics, University of Washington, Seattle, Washington, D.C. 98195, USA
| | - L Wehner
- Institut für Kernchemie, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany
| | - C Wraith
- Oliver Lodge Laboratory, University of Liverpool, Oxford Street, Liverpool L69 7ZE, United Kingdom
| | - L Xie
- School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Z Y Xu
- KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium
| | - X F Yang
- KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium
- School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
| | - D T Yordanov
- Institut de Physique Nucléaire, CNRS-IN2P3, Université Paris-Sud, Université Paris-Saclay, 91406 Orsay, France
| |
Collapse
|