1
|
Woo CU, Noh JD. Motility-Induced Pinning in Flocking System with Discrete Symmetry. PHYSICAL REVIEW LETTERS 2024; 133:188301. [PMID: 39547183 DOI: 10.1103/physrevlett.133.188301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/26/2024] [Indexed: 11/17/2024]
Abstract
We report a motility-induced pinning transition in the active Ising model for a self-propelled particle system with discrete symmetry. This model was known to exhibit a liquid-gas type flocking phase transition, but a recent study reveals that the polar order is metastable due to droplet excitation. Using extensive Monte Carlo simulations, we demonstrate that, for an intermediate alignment interaction strength, the steady state is characterized by traveling local domains, which renders the polar order short-ranged in both space and time. We further demonstrate that interfaces between colliding domains become pinned as the alignment interaction strength increases. A resonating back-and-forth motion of individual self-propelled particles across interfaces is identified as a mechanism for the pinning. We present a numerical phase diagram for the motility-induced pinning transition, and an approximate analytic theory for the growth and shrink dynamics of pinned interfaces. Our results show that pinned interfaces grow to a macroscopic size preventing the polar order in the regime where the particle diffusion rate is sufficiently smaller than the self-propulsion rate. The growth behavior in the opposite regime and its implications on the polar order remain unresolved and require further investigation.
Collapse
|
2
|
Ikeda H, Kuroda Y. Continuous symmetry breaking of low-dimensional systems driven by inhomogeneous oscillatory driving forces. Phys Rev E 2024; 110:024140. [PMID: 39295011 DOI: 10.1103/physreve.110.024140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 08/06/2024] [Indexed: 09/21/2024]
Abstract
The driving forces of chiral active particles and deformations of cells are often modeled by spatially inhomogeneous but temporally periodic driving forces. Such inhomogeneous oscillatory driving forces have only recently been proposed in the context of active matter, and their effects on the systems are not yet fully understood. In this work, we theoretically study the impact of spatially inhomogeneous oscillatory driving forces on continuous symmetry breaking. We first analyze the linear model for the soft modes in the ordered phase to derive the lower critical dimension of the model, and then analyze the spherical model to investigate more detailed phase behaviors. Interestingly, our analysis reveals that symmetry breaking occurs even in one and two dimensions, where the Hohenberg-Mermin-Wagner theorem prohibits continuous symmetry breaking in equilibrium. Furthermore, fluctuations of conserved quantities, such as density, are anomalously suppressed in the long-wavelength, i.e., show hyperuniformity.
Collapse
|
3
|
Eswaran P, Mishra S. Synchronized rotations of active particles on chemical substrates. SOFT MATTER 2024; 20:2592-2599. [PMID: 38416156 DOI: 10.1039/d3sm00452j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Many microorganisms use chemical 'signaling' - a quintessential self-organizing strategy in non-equilibrium - that can induce spontaneous aggregation and coordinated motion. Using synthetic signaling as a design principle, we construct a minimal model of active Brownian particles (ABPs) having soft repulsive interactions on a chemically quenched patterned substrate. The interplay between chemo-phoretic interactions and activity is numerically investigated for a proposed variant of the Keller-Segel model for chemotaxis. Such competition not only results in a chemo-motility-induced phase-separated state, but also results in a new cohesive clustering phase with synchronized rotations. Our results suggest that rotational order can emerge in systems by virtue of activity and repulsive interactions alone without an explicit alignment interaction. These rotations can also be exploited by designing mechanical devices that can generate reorienting torques using active particles.
Collapse
Affiliation(s)
- Pathma Eswaran
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| | - Shradha Mishra
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
4
|
Mangeat M, Chakraborty S, Wysocki A, Rieger H. Stationary particle currents in sedimenting active matter wetting a wall. Phys Rev E 2024; 109:014616. [PMID: 38366426 DOI: 10.1103/physreve.109.014616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/02/2024] [Indexed: 02/18/2024]
Abstract
Recently it was predicted, on the basis of a lattice gas model, that scalar active matter in a gravitational field would rise against gravity up a confining wall or inside a thin capillary-in spite of repulsive particle-wall interactions [Phys. Rev. Lett. 124, 048001 (2020)0031-900710.1103/PhysRevLett.124.048001]. In this paper we confirm this prediction with sedimenting active Brownian particles (ABPs) in a box numerically and elucidate the mechanism leading to the formation of a meniscus rising above the bulk of the sedimentation region. The height of the meniscus increases with the activity of the system, algebraically with the Péclet number. The formation of the meniscus is determined by a stationary circular particle current, a vortex, centered at the base of the meniscus, whose size and strength increase with the ABP activity. The origin of these vortices can be traced back to the confinement of the ABPs in a box: already the stationary state of ideal (noninteracting) ABPs without gravitation displays circular currents that arrange in a highly symmetric way in the eight octants of the box. Gravitation distorts this vortex configuration downward, leaving two major vortices at the two side walls, with a strong downward flow along the walls. Repulsive interactions between the ABPs change this situation only as soon as motility induced phase separation (MIPS) sets in and forms a dense, sedimented liquid region at the bottom, which pushes the center of the vortex upwards towards the liquid-gas interface. Self-propelled particles therefore represent an impressive realization of scalar active matter that forms stationary particle currents being able to perform visible work against gravity or any other external field, which we predict to be observable experimentally in active colloids under gravitation.
Collapse
Affiliation(s)
- Matthieu Mangeat
- Center for Biophysics & Department for Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Shauri Chakraborty
- Center for Biophysics & Department for Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Adam Wysocki
- Center for Biophysics & Department for Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Heiko Rieger
- Center for Biophysics & Department for Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
- INM - Leibniz Institute for New Materials, Campus D2 2, D-66123 Saarbrücken, Germany
| |
Collapse
|
5
|
Sorkin B, Be'er A, Diamant H, Ariel G. Detecting and characterizing phase transitions in active matter using entropy. SOFT MATTER 2023; 19:5118-5126. [PMID: 37382372 DOI: 10.1039/d3sm00482a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
A major challenge in the study of active matter lies in quantitative characterization of phases and transitions between them. We show how the entropy of a collection of active objects can be used to classify regimes and spatial patterns in their collective behavior. Specifically, we estimate the contributions to the total entropy from correlations between the degrees of freedom of position and orientation. This analysis pin-points the flocking transition in the Vicsek model while clarifying the physical mechanism behind the transition. When applied to experiments on swarming Bacillus subtilis with different cell aspect ratios and overall bacterial area fractions, the entropy analysis reveals a rich phase diagram with transitions between qualitatively different swarm statistics. We discuss physical and biological implications of these findings.
Collapse
Affiliation(s)
- Benjamin Sorkin
- School of Chemistry and Center for Physics and Chemistry of Living Systems, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Avraham Be'er
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Midreshet Ben-Gurion, Israel
- Department of Physics, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
| | - Haim Diamant
- School of Chemistry and Center for Physics and Chemistry of Living Systems, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Gil Ariel
- Department of Mathematics, Bar-Ilan University, 52000 Ramat Gan, Israel.
| |
Collapse
|
6
|
Sorkin B, Ricouvier J, Diamant H, Ariel G. Resolving entropy contributions in nonequilibrium transitions. Phys Rev E 2023; 107:014138. [PMID: 36797967 DOI: 10.1103/physreve.107.014138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/13/2022] [Indexed: 02/03/2023]
Abstract
We derive a functional for the entropy contributed by any microscopic degrees of freedom as arising from their measurable pair correlations. Applicable both in and out of equilibrium, this functional yields the maximum entropy which a system can have given a certain correlation function. When applied to different correlations, the method allows us to identify the degrees of freedom governing a certain physical regime, thus capturing and characterizing dynamic transitions. The formalism applies also to systems whose translational invariance is broken by external forces and whose number of particles may vary. We apply it to experimental results for jammed bidisperse emulsions, capturing the crossover of this nonequilibrium system from crystalline to disordered hyperuniform structures as a function of mixture composition. We discover that the cross-correlations between the positions and sizes of droplets in the emulsion play the central role in the formation of the disordered hyperuniform states. We discuss implications of the approach for entropy estimation out of equilibrium and for characterizing transitions in disordered systems.
Collapse
Affiliation(s)
- Benjamin Sorkin
- School of Chemistry and Center for Physics and Chemistry of Living Systems, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Joshua Ricouvier
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Haim Diamant
- School of Chemistry and Center for Physics and Chemistry of Living Systems, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Gil Ariel
- Department of Mathematics, Bar-Ilan University, 52000 Ramat Gan, Israel
| |
Collapse
|
7
|
Xu G, Huang T, Han Y, Chen Y. Morphologies and dynamics of free surfaces of crystals composed of active particles. SOFT MATTER 2022; 18:8830-8839. [PMID: 36367378 DOI: 10.1039/d2sm00783e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Active matter exhibits various collective motions and nonequilibrium phases, such as crystals; however, their surface properties have been poorly explored. Here, we use Brownian dynamics simulations to investigate the surface morphology and dynamics of two-dimensional active crystals during and after growth. For crystal growth on a substrate, the position and roughness of the crystal surface reach steady states at different times. In the steady state, the surface exhibits superdiffusive behaviour at the short time, and the roughness is insensitive to the roughening process and particle activity. We observe two-stage and three-stage surface roughening at different Péclet numbers. The result of dynamic scaling analysis shows that the surface is similar to anomalous roughening, which is distinct from the normal roughening typically found in conventional passive systems. Capillary wave theory for a thermal equilibrium system can describe the active surface fluctuations only in the long-wavelength regime, indicating that active particles mainly drive the surface out of equilibrium locally. These similarities and differences between the active and passive crystal surfaces are essential for understanding active crystals and interfaces.
Collapse
Affiliation(s)
- Guoqing Xu
- Center of Soft Matter Physics and Its Applications, Beihang University, Beijing 100191, China.
- School of Physics, Beihang University, Beijing 100191, China
| | - Tao Huang
- Faculty of Science, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Yilong Han
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| | - Yong Chen
- Center of Soft Matter Physics and Its Applications, Beihang University, Beijing 100191, China.
- School of Physics, Beihang University, Beijing 100191, China
| |
Collapse
|
8
|
Chen L, Lee CF, Maitra A, Toner J. Incompressible Polar Active Fluids with Quenched Random Field Disorder in Dimensions d>2. PHYSICAL REVIEW LETTERS 2022; 129:198001. [PMID: 36399725 DOI: 10.1103/physrevlett.129.198001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/24/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
We present a hydrodynamic theory of incompressible polar active fluids with quenched random field disorder. This theory shows that such fluids can overcome the disruption caused by the quenched disorder and move coherently, in the sense of having a nonzero mean velocity in the hydrodynamic limit. However, the scaling behavior of this class of active systems cannot be described by linearized hydrodynamics in spatial dimensions between 2 and 5. Nonetheless, we obtain the exact dimension-dependent scaling exponents in these dimensions.
Collapse
Affiliation(s)
- Leiming Chen
- School of Material Science and Physics, China University of Mining and Technology, Xuzhou Jiangsu, 221116, People's Republic of China
| | - Chiu Fan Lee
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Ananyo Maitra
- Laboratoire de Physique Théorique et Modélisation, CNRS UMR 8089, CY Cergy Paris Université, F-95302 Cergy-Pontoise Cedex, France
| | - John Toner
- Department of Physics and Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403, USA
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| |
Collapse
|
9
|
Chen L, Lee CF, Maitra A, Toner J. Packed Swarms on Dirt: Two-Dimensional Incompressible Flocks with Quenched and Annealed Disorder. PHYSICAL REVIEW LETTERS 2022; 129:188004. [PMID: 36374680 DOI: 10.1103/physrevlett.129.188004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
We show that incompressible polar active fluids can exhibit an ordered, coherently moving phase even in the presence of quenched disorder in two dimensions. Unlike such active fluids with annealed disorder (i.e., time-dependent random white noise) only, which behave like equilibrium ferromagnets with long-range interactions, this robustness against quenched disorder is a fundamentally nonequilibrium phenomenon. The ordered state belongs to a new universality class, whose scaling laws we calculate using three different renormalization group schemes, which all give scaling exponents within 0.02 of each other, indicating that our results are quite accurate. Our predictions can be quantitatively tested in readily available artificial active systems and imply that biological systems such as cell layers can move coherently in vivo, where disorder is inevitable.
Collapse
Affiliation(s)
- Leiming Chen
- School of Material Science and Physics, China University of Mining and Technology, Xuzhou Jiangsu, 221116, People's Republic of China
| | - Chiu Fan Lee
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Ananyo Maitra
- Laboratoire de Physique Théorique et Modélisation, CNRS UMR 8089, CY Cergy Paris Université, F-95032 Cergy-Pontoise Cedex, France
| | - John Toner
- Department of Physics and Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403, USA
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| |
Collapse
|
10
|
Dor YB, Kafri Y, Kardar M, Tailleur J. Passive objects in confined active fluids: A localization transition. Phys Rev E 2022; 106:044604. [PMID: 36397585 DOI: 10.1103/physreve.106.044604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
We study how walls confining active fluids interact with asymmetric passive objects placed in their bulk. We show that the objects experience nonconservative long-ranged forces mediated by the active bath. To leading order, these forces can be computed using a generalized image theorem. The walls repel asymmetric objects, irrespective of their microscopic properties or their orientations. For circular cavities, we demonstrate how this may lead to the localization of asymmetric objects in the center of the cavity, something impossible for symmetric ones.
Collapse
Affiliation(s)
- Ydan Ben Dor
- Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Yariv Kafri
- Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Mehran Kardar
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Julien Tailleur
- Université Paris Cité, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| |
Collapse
|
11
|
Chen L, Lee CF, Maitra A, Toner J. Hydrodynamic theory of two-dimensional incompressible polar active fluids with quenched and annealed disorder. Phys Rev E 2022; 106:044608. [PMID: 36397548 DOI: 10.1103/physreve.106.044608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
We study the moving phase of two-dimensional (2D) incompressible polar active fluids in the presence of both quenched and annealed disorder. We show that long-range polar order persists even in this defect-ridden two-dimensional system. We obtain the large-distance, long-time scaling laws of the velocity fluctuations using three distinct dynamic renormalization group schemes. These are an uncontrolled one-loop calculation in exactly two dimensions, and two d=(d_{c}-ε) expansions to O(ε), obtained by two different analytic continuations of our 2D model to higher spatial dimensions: a "hard" continuation which has d_{c}=7/3, and a "soft" continuation with d_{c}=5/2. Surprisingly, the quenched and annealed parts of the velocity correlation function have the same anisotropy exponent and the relaxational and propagating parts of the dispersion relation have the same dynamic exponent in the nonlinear theory even though they are distinct in the linearized theory. This is due to anomalous hydrodynamics. Furthermore, all three renormalization schemes yield very similar values for the universal exponents, and therefore we expect the numerical values that we predict for them to be highly accurate.
Collapse
Affiliation(s)
- Leiming Chen
- School of Material Science and Physics, China University of Mining and Technology, Xuzhou Jiangsu 221116, People's Republic of China
| | - Chiu Fan Lee
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Ananyo Maitra
- Laboratoire de Physique Théorique et Modélisation, CNRS UMR 8089, CY Cergy Paris Université, F-95032 Cergy-Pontoise Cedex, France
| | - John Toner
- Department of Physics and Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403, USA
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
| |
Collapse
|
12
|
Zinati RBA, Besse M, Tarjus G, Tissier M. Dense polar active fluids in a disordered environment. Phys Rev E 2022; 105:064605. [PMID: 35854525 DOI: 10.1103/physreve.105.064605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
We examine the influence of quenched disorder on the flocking transition of dense polar active matter. We consider incompressible systems of active particles with aligning interactions under the effect of either quenched random forces or random dilution. The system displays a continuous disorder-order (flocking) transition, and the associated scaling behavior is described by a new universality class which is controlled by a quenched Navier-Stokes fixed point. We determine the critical exponents through a perturbative renormalization group analysis. We show that the two forms of quenched disorder, random force and random mass (dilution), belong to the same universality class, in contrast with the situation at equilibrium.
Collapse
Affiliation(s)
- Riccardo Ben Alì Zinati
- Sorbonne University, CNRS-UMR7600, Laboratoire de Physique Théorique de la Matière Condensée, F-75005, Paris, France
| | - Marc Besse
- Sorbonne University, CNRS-UMR7600, Laboratoire de Physique Théorique de la Matière Condensée, F-75005, Paris, France
| | - Gilles Tarjus
- Sorbonne University, CNRS-UMR7600, Laboratoire de Physique Théorique de la Matière Condensée, F-75005, Paris, France
| | - Matthieu Tissier
- Sorbonne University, CNRS-UMR7600, Laboratoire de Physique Théorique de la Matière Condensée, F-75005, Paris, France
| |
Collapse
|
13
|
Solon A, Chaté H, Toner J, Tailleur J. Susceptibility of Polar Flocks to Spatial Anisotropy. PHYSICAL REVIEW LETTERS 2022; 128:208004. [PMID: 35657869 DOI: 10.1103/physrevlett.128.208004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
We study the effect of spatial anisotropy on polar flocks by investigating active q-state clock models in two dimensions. In contrast to the equilibrium case, we find that any amount of anisotropy is asymptotically relevant, drastically altering the phenomenology from that of the rotationally invariant case. All of the well-known physics of the Vicsek model, from giant density fluctuations to microphase separation, is replaced by that of the active Ising model, with short-range correlations and complete phase separation. These changes appear beyond a length scale that diverges in the q→∞ limit, so that the Vicsek-model phenomenology is observed in finite systems for weak enough anisotropy, i.e., sufficiently high q. We provide a scaling argument which explains why anisotropy has such different effects in the passive and active cases.
Collapse
Affiliation(s)
- Alexandre Solon
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, 75005 Paris, France
| | - Hugues Chaté
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, 75005 Paris, France
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Computational Science Research Center, Beijing 100094, China
| | - John Toner
- Department of Physics and Institute for Fundamental Science, University of Oregon, Eugene, Oregon 97403, USA
| | - Julien Tailleur
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, 75205 Paris, France
| |
Collapse
|
14
|
Cocconi L, Salbreux G, Pruessner G. Scaling of entropy production under coarse graining in active disordered media. Phys Rev E 2022; 105:L042601. [PMID: 35590651 DOI: 10.1103/physreve.105.l042601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/11/2022] [Indexed: 01/01/2023]
Abstract
Entropy production plays a fundamental role in the study of nonequilibrium systems by offering a quantitative handle on the degree of time-reversal symmetry breaking. It depends crucially on the degree of freedom considered as well as on the scale of description. How the entropy production at one resolution of the degrees of freedom is related to the entropy production at another resolution is a fundamental question which has recently attracted interest. This relationship is of particular relevance to coarse-grained and continuum descriptions of a given phenomenon. In this work, we derive the scaling of the entropy production under iterative coarse graining on the basis of the correlations of the underlying microscopic transition rates for noninteracting particles in active disordered media. Our approach unveils a natural criterion to distinguish equilibrium-like and genuinely nonequilibrium macroscopic phenomena based on the sign of the scaling exponent of the entropy production per mesostate.
Collapse
Affiliation(s)
- Luca Cocconi
- Department of Mathematics, Imperial College, SW7 2BX London, United Kingdom.,Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,The Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Guillaume Salbreux
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Gunnar Pruessner
- Department of Mathematics, Imperial College, SW7 2BX London, United Kingdom
| |
Collapse
|
15
|
Aranson IS, Pikovsky A. Confinement and Collective Escape of Active Particles. PHYSICAL REVIEW LETTERS 2022; 128:108001. [PMID: 35333075 DOI: 10.1103/physrevlett.128.108001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/28/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Active matter broadly covers the dynamics of self-propelled particles. While the onset of collective behavior in homogenous active systems is relatively well understood, the effect of inhomogeneities such as obstacles and traps lacks overall clarity. Here, we study how interacting, self-propelled particles become trapped and released from a trap. We have found that captured particles aggregate into an orbiting condensate with a crystalline structure. As more particles are added, the trapped condensates escape as a whole. Our results shed light on the effects of confinement and quenched disorder in active matter.
Collapse
Affiliation(s)
- Igor S Aranson
- Departments of Biomedical Engineering, Chemistry, and Mathematics, Penn State University, University Park, Pennsylvania 16802, USA
| | - Arkady Pikovsky
- Institute for Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Strasse 24/25, 14476 Potsdam-Golm, Germany
- Department of Control Theory, Nizhny Novgorod State University, Gagarin Avenue 23, 606950 Nizhny Novgorod, Russia
| |
Collapse
|
16
|
Khadem SMJ, Siboni NH, Klapp SHL. Transport and phase separation of active Brownian particles in fluctuating environments. Phys Rev E 2022; 104:064615. [PMID: 35030915 DOI: 10.1103/physreve.104.064615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/30/2021] [Indexed: 11/07/2022]
Abstract
In this work, we study the dynamics of a single active Brownian particle, as well as the collective behavior of interacting active Brownian particles, in a fluctuating heterogeneous environment. We employ a variant of the diffusing diffusivity model where the equation of motion of the active particle involves a time-dependent motility and diffusivities. Within our model, those fluctuations are coupled to each other. Using analytical methods, we obtain the probability distribution function of particle displacement and its moments for a single particle. We then investigate the impact of the environmental fluctuations on the collective behavior of the active Brownian particles by means of extensive numerical simulations. Our results show that the fluctuations hinder the motility-induced phase separation, accompanied by a significant change of the density dependence of particle velocities. These effects are interpreted using our analytical results for the dynamics of a single particle.
Collapse
Affiliation(s)
- S M J Khadem
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - N H Siboni
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - S H L Klapp
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| |
Collapse
|
17
|
Ventejou B, Chaté H, Montagne R, Shi XQ. Susceptibility of Orientationally Ordered Active Matter to Chirality Disorder. PHYSICAL REVIEW LETTERS 2021; 127:238001. [PMID: 34936788 DOI: 10.1103/physrevlett.127.238001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/27/2021] [Indexed: 06/14/2023]
Abstract
We investigate the susceptibility of long-range ordered phases of two-dimensional dry aligning active matter to population disorder, taken in the form of a distribution of intrinsic individual chiralities. Using a combination of particle-level models and hydrodynamic theories derived from them, we show that while in finite systems all ordered phases resist a finite amount of such chirality disorder, the homogeneous ones (polar flocks and active nematics) are unstable to any amount of disorder in the infinite-size limit. On the other hand, we find that the inhomogeneous solutions of the coexistence phase (bands) may resist a finite amount of chirality disorder even asymptotically.
Collapse
Affiliation(s)
- Bruno Ventejou
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Hugues Chaté
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Computational Science Research Center, Beijing 100193, China
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, 75005 Paris, France
| | - Raul Montagne
- Departamento de Fisica, Universidade Federal Rural de Pernambuco (UFRPE), 52171-900 Recife, Pernambuco, Brazil
| | - Xia-Qing Shi
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| |
Collapse
|
18
|
Klamser JU, Dauchot O, Tailleur J. Kinetic Monte Carlo Algorithms for Active Matter Systems. PHYSICAL REVIEW LETTERS 2021; 127:150602. [PMID: 34678030 DOI: 10.1103/physrevlett.127.150602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/07/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
We study kinetic Monte Carlo (KMC) descriptions of active particles. We show that, when they rely on purely persistent, active steps, their continuous-time limit is ill-defined, leading to the vanishing of trademark behaviors of active matter such as the motility-induced phase separation, ratchet effects, as well as to a diverging mechanical pressure. We then show how, under an appropriate scaling, mixing passive steps with active ones leads to a well-defined continuous-time limit that however differs from standard active dynamics. Finally, we propose new KMC algorithms whose continuous-time limits lead to the dynamics of active Ornstein-Uhlenbeck, active Brownian, and run-and-tumble particles.
Collapse
Affiliation(s)
- Juliane U Klamser
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
| | - Olivier Dauchot
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
| | - Julien Tailleur
- Laboratoire Matière et Systèmes Complexes (MSC),UMR 7057 CNRS, Université de Paris, 75205 Paris, France
| |
Collapse
|
19
|
Duan Y, Mahault B, Ma YQ, Shi XQ, Chaté H. Breakdown of Ergodicity and Self-Averaging in Polar Flocks with Quenched Disorder. PHYSICAL REVIEW LETTERS 2021; 126:178001. [PMID: 33988412 DOI: 10.1103/physrevlett.126.178001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/10/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
We show that spatial quenched disorder affects polar active matter in ways more complex and far reaching than heretofore believed. Using simulations of the 2D Vicsek model subjected to random couplings or a disordered scattering field, we find in particular that ergodicity is lost in the ordered phase, the nature of which we show to depend qualitatively on the type of quenched disorder: for random couplings, it remains long-range ordered, but qualitatively different from the pure (disorderless) case. For random scatterers, polar order varies with system size but we find strong non-self-averaging, with sample-to-sample fluctuations dominating asymptotically, which prevents us from elucidating the asymptotic status of order.
Collapse
Affiliation(s)
- Yu Duan
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Benoît Mahault
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xia-Qing Shi
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | - Hugues Chaté
- Service de Physique de l'Etat Condensé, CEA, CNRS, Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Computational Science Research Center, Beijing 100193, China
| |
Collapse
|