1
|
Lu X, Xie B, Yang Y, Zhang Y, Kong X, Li J, Ding F, Wang ZJ, Liu J. Magic Momenta and Three-Dimensional Landau Levels from a Three-Dimensional Graphite Moiré Superlattice. PHYSICAL REVIEW LETTERS 2024; 132:056601. [PMID: 38364175 DOI: 10.1103/physrevlett.132.056601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/17/2023] [Accepted: 01/04/2024] [Indexed: 02/18/2024]
Abstract
In this Letter, we theoretically explore the physical properties of a new type of three-dimensional graphite moiré superlattice, the bulk alternating twisted graphite (ATG) system with homogeneous twist angle, which is grown by in situ chemical vapor decomposition method. Compared to twisted bilayer graphene (TBG), the bulk ATG system is bestowed with an additional wave vector degree of freedom due to the extra dimensionality. As a result, when the twist angle of bulk ATG is smaller than twice of the magic angle of TBG, there always exist "magic momenta" which host topological flat bands with vanishing in-plane Fermi velocities. Most saliently, when the twist angle is relatively large, a dispersionless three-dimensional zeroth Landau level would emerge in the bulk ATG, which may give rise to robust three-dimensional quantum Hall effects and unusual quantum-Hall physics over a large range of twist angles.
Collapse
Affiliation(s)
- Xin Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
| | - Bo Xie
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
| | - Yue Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yiwen Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
| | - Xiao Kong
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jun Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
| | - Feng Ding
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, China
| | - Zhu-Jun Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jianpeng Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
- Liaoning Academy of Materials, Shenyang 110167, China
| |
Collapse
|
2
|
Díez-Mérida J, Díez-Carlón A, Yang SY, Xie YM, Gao XJ, Senior J, Watanabe K, Taniguchi T, Lu X, Higginbotham AP, Law KT, Efetov DK. Symmetry-broken Josephson junctions and superconducting diodes in magic-angle twisted bilayer graphene. Nat Commun 2023; 14:2396. [PMID: 37100775 PMCID: PMC10133447 DOI: 10.1038/s41467-023-38005-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
The coexistence of gate-tunable superconducting, magnetic and topological orders in magic-angle twisted bilayer graphene provides opportunities for the creation of hybrid Josephson junctions. Here we report the fabrication of gate-defined symmetry-broken Josephson junctions in magic-angle twisted bilayer graphene, where the weak link is gate-tuned close to the correlated insulator state with a moiré filling factor of υ = -2. We observe a phase-shifted and asymmetric Fraunhofer pattern with a pronounced magnetic hysteresis. Our theoretical calculations of the junction weak link-with valley polarization and orbital magnetization-explain most of these unconventional features. The effects persist up to the critical temperature of 3.5 K, with magnetic hysteresis observed below 800 mK. We show how the combination of magnetization and its current-induced magnetization switching allows us to realise a programmable zero-field superconducting diode. Our results represent a major advance towards the creation of future superconducting quantum electronic devices.
Collapse
Affiliation(s)
- J Díez-Mérida
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
| | - A Díez-Carlón
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
| | - S Y Yang
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
| | - Y-M Xie
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - X-J Gao
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - J Senior
- IST Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - K Watanabe
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - T Taniguchi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - X Lu
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
| | | | - K T Law
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Dmitri K Efetov
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain.
| |
Collapse
|
3
|
Liu X, Peng R, Sun Z, Liu J. Moiré Phonons in Magic-Angle Twisted Bilayer Graphene. NANO LETTERS 2022; 22:7791-7797. [PMID: 36170965 PMCID: PMC9562463 DOI: 10.1021/acs.nanolett.2c02010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/11/2022] [Indexed: 06/16/2023]
Abstract
Magic-angle twisted bilayer graphene (TBG) has attracted significant interest recently due to the discoveries of diverse correlated and topological states. In this work, we study the phonon properties in magic-angle TBG based on many-body classical potential and interatomic forces generated by a deep neural network trained with data from ab initio calculations. We have discovered a number of soft modes which can exhibit dipolar, quadrupolar, and octupolar vibrational patterns in real space, as well as some time-reversal breaking chiral phonon modes. We have further studied the phonon effects on the electronic structures by freezing certain soft phonon modes. We find that if a soft quadrupolar phonon mode is assumed to be frozen, the system would exhibit a charge order which is perfectly consistent with recent experiments. Moreover, once some low-frequency C2z-breaking modes get frozen, the Dirac points at the charge neutrality point would be gapped out, which provides an alternative perspective to the origin of correlated insulator state at charge neutrality point.
Collapse
Affiliation(s)
- Xiaoqian Liu
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, China
| | - Ran Peng
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, China
| | - Zhaoru Sun
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, China
| | - Jianpeng Liu
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201210, China
- ShanghaiTech
Laboratory for Topological Physics, ShanghaiTech
University, Shanghai 201210, China
| |
Collapse
|