1
|
Fushitani M, Fujise H, Hishikawa A, You D, Saito S, Luo Y, Ueda K, Ibrahim H, Légaré F, Pratt ST, Eng-Johnsson P, Mauritsson J, Olofsson A, Peschel J, Simpson ER, Carpeggiani PA, Ertel D, Maroju PK, Moioli M, Sansone G, Shah R, Csizmadia T, Dumergue M, Nandiga Gopalakrishna H, Kühn S, Callegari C, Danailov M, Demidovich A, Raimondi L, Zangrando M, De Ninno G, Di Fraia M, Giannessi L, Plekan O, Rebernik Ribic P, Prince KC. Wave packet dynamics and control in excited states of molecular nitrogen. J Chem Phys 2024; 160:104203. [PMID: 38469909 DOI: 10.1063/5.0188182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/16/2024] [Indexed: 03/13/2024] Open
Abstract
Wave packet interferometry with vacuum ultraviolet light has been used to probe a complex region of the electronic spectrum of molecular nitrogen, N2. Wave packets of Rydberg and valence states were excited by using double pulses of vacuum ultraviolet (VUV), free-electron-laser (FEL) light. These wave packets were composed of contributions from multiple electronic states with a moderate principal quantum number (n ∼ 4-9) and a range of vibrational and rotational quantum numbers. The phase relationship of the two FEL pulses varied in time, but as demonstrated previously, a shot-by-shot analysis allows the spectra to be sorted according to the phase between the two pulses. The wave packets were probed by angle-resolved photoionization using an infrared pulse with a variable delay after the pair of excitation pulses. The photoelectron branching fractions and angular distributions display oscillations that depend on both the time delays and the relative phases of the VUV pulses. The combination of frequency, time delay, and phase selection provides significant control over the ionization process and ultimately improves the ability to analyze and assign complex molecular spectra.
Collapse
Affiliation(s)
- Mizuho Fushitani
- Department of Chemistry, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Hikaru Fujise
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Akiyoshi Hishikawa
- Department of Chemistry, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Daehyun You
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Shu Saito
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Yu Luo
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Kiyoshi Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Heide Ibrahim
- INRS, Énergie, Matériaux et Télécommunications, 1650 Bld. Lionel Boulet, Varennes, Québec J3X 1S2, Canada
| | - Francois Légaré
- INRS, Énergie, Matériaux et Télécommunications, 1650 Bld. Lionel Boulet, Varennes, Québec J3X 1S2, Canada
| | - Stephen T Pratt
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | | | | | - Anna Olofsson
- Department of Physics, Lund University, Lund, Sweden
| | | | | | | | - Dominik Ertel
- Stefan-Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany
| | - Praveen Kumar Maroju
- Stefan-Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany
| | - Matteo Moioli
- Stefan-Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany
| | - Giuseppe Sansone
- Stefan-Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany
| | - Ronak Shah
- Stefan-Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany
| | - Tamás Csizmadia
- ELI ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, H-6728 Szeged, Hungary
| | - Mathieu Dumergue
- ELI ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, H-6728 Szeged, Hungary
| | | | - Sergei Kühn
- ELI ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3, H-6728 Szeged, Hungary
| | | | | | | | | | - Marco Zangrando
- Department of Chemistry, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
- Elettra Sincrotrone Trieste, I-34149 Trieste, Italy
| | - Giovanni De Ninno
- Department of Chemistry, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
- Elettra Sincrotrone Trieste, I-34149 Trieste, Italy
| | | | - Luca Giannessi
- Department of Chemistry, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
- Elettra Sincrotrone Trieste, I-34149 Trieste, Italy
| | | | - Primoz Rebernik Ribic
- Department of Chemistry, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
- Elettra Sincrotrone Trieste, I-34149 Trieste, Italy
| | - Kevin C Prince
- Department of Chemistry, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan
- Elettra Sincrotrone Trieste, I-34149 Trieste, Italy
| |
Collapse
|
2
|
Hikosaka Y, Kaneyasu T, Wada S, Kohguchi H, Ota H, Nakamura E, Iwayama H, Fujimoto M, Hosaka M, Katoh M. Frequency-domain interferometry for the determination of time delay between two extreme-ultraviolet wave packets generated by a tandem undulator. Sci Rep 2023; 13:10292. [PMID: 37357245 DOI: 10.1038/s41598-023-37449-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023] Open
Abstract
Synchrotron radiation, emitted by relativistic electrons traveling in a magnetic field, has poor temporal coherence. However, recent research has proved that time-domain interferometry experiments, which were thought to be enabled by only lasers of excellent temporal coherence, can be implemented with synchrotron radiation using a tandem undulator. The radiation generated by the tandem undulator comprises pairs of light wave packets, and the longitudinal coherence within a light wave packet pair is used to achieve time-domain interferometry. The time delay between two light wave packets, formed by a chicane for the electron trajectory, can be adjusted in the femtosecond range by a standard synchrotron technology. In this study, we show that frequency-domain spectra of the tandem undulator radiation exhibit fringe structures from which the time delay between a light wave packet pair can be determined with accuracy on the order of attoseconds. The feasibility and limitations of the frequency-domain interferometric determination of the time delay are examined.
Collapse
Affiliation(s)
- Y Hikosaka
- Institute of Liberal Arts and Sciences, University of Toyama, Toyama, 930-0194, Japan.
| | - T Kaneyasu
- SAGA Light Source, Tosu, 841-0005, Japan
- Institute for Molecular Science, Okazaki, 444-8585, Japan
| | - S Wada
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | - H Kohguchi
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | - H Ota
- Institute for Molecular Science, Okazaki, 444-8585, Japan
| | - E Nakamura
- Institute for Molecular Science, Okazaki, 444-8585, Japan
| | - H Iwayama
- Institute for Molecular Science, Okazaki, 444-8585, Japan
- Sokendai (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - M Fujimoto
- Synchrotron Radiation Research Center, Nagoya University, Nagoya, 464-8603, Japan
| | - M Hosaka
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - M Katoh
- Institute for Molecular Science, Okazaki, 444-8585, Japan
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima, 739-0046, Japan
| |
Collapse
|
3
|
Kaneyasu T, Hikosaka Y, Wada S, Fujimoto M, Ota H, Iwayama H, Katoh M. Time domain double slit interference of electron produced by XUV synchrotron radiation. Sci Rep 2023; 13:6142. [PMID: 37061592 PMCID: PMC10105747 DOI: 10.1038/s41598-023-33039-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023] Open
Abstract
We present a new realization of the time-domain double-slit experiment with photoelectrons, demonstrating that spontaneous radiation from a bunch of relativistic electrons can be used to control the quantum interference of single-particles. The double-slit arrangement is realized by a pair of light wave packets with attosecond-controlled spacing, which is naturally included in the spontaneous radiation from two undulators in series. Photoelectrons emitted from helium atoms are observed in the energy-domain under the condition of detecting them one by one, and the stochastic buildup of the quantum interference pattern on a detector plane is recorded.
Collapse
Affiliation(s)
- T Kaneyasu
- SAGA Light Source, Tosu, 841-0005, Japan.
- Institute for Molecular Science, Okazaki, 444-8585, Japan.
| | - Y Hikosaka
- Institute of Liberal Arts and Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - S Wada
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | - M Fujimoto
- Institute for Molecular Science, Okazaki, 444-8585, Japan
- Synchrotron Radiation Research Center, Nagoya University, Nagoya, 464-8603, Japan
| | - H Ota
- Institute for Molecular Science, Okazaki, 444-8585, Japan
| | - H Iwayama
- Institute for Molecular Science, Okazaki, 444-8585, Japan
- Sokendai (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - M Katoh
- Institute for Molecular Science, Okazaki, 444-8585, Japan
- Synchrotron Radiation Research Center, Nagoya University, Nagoya, 464-8603, Japan
- Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima, 739-0046, Japan
| |
Collapse
|
4
|
Uhl D, Wituschek A, Michiels R, Trinter F, Jahnke T, Allaria E, Callegari C, Danailov M, Di Fraia M, Plekan O, Bangert U, Dulitz K, Landmesser F, Michelbach M, Simoncig A, Manfredda M, Spampinati S, Penco G, Squibb RJ, Feifel R, Laarmann T, Mudrich M, Prince KC, Cerullo G, Giannessi L, Stienkemeier F, Bruder L. Extreme Ultraviolet Wave Packet Interferometry of the Autoionizing HeNe Dimer. J Phys Chem Lett 2022; 13:8470-8476. [PMID: 36054027 PMCID: PMC9486932 DOI: 10.1021/acs.jpclett.2c01619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Femtosecond extreme ultraviolet wave packet interferometry (XUV-WPI) was applied to study resonant interatomic Coulombic decay (ICD) in the HeNe dimer. The high demands on phase stability and sensitivity for vibronic XUV-WPI of molecular-beam targets are met using an XUV phase-cycling scheme. The detected quantum interferences exhibit vibronic dephasing and rephasing signatures along with an ultrafast decoherence assigned to the ICD process. A Fourier analysis reveals the molecular absorption spectrum with high resolution. The demonstrated experiment shows a promising route for the real-time analysis of ultrafast ICD processes with both high temporal and high spectral resolution.
Collapse
Affiliation(s)
- Daniel Uhl
- Institute
of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Andreas Wituschek
- Institute
of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Rupert Michiels
- Institute
of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Florian Trinter
- Institut
für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
- Molecular
Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Till Jahnke
- Institut
für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany
- European
XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Enrico Allaria
- Elettra-Sincrotrone
Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Carlo Callegari
- Elettra-Sincrotrone
Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Miltcho Danailov
- Elettra-Sincrotrone
Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Michele Di Fraia
- Elettra-Sincrotrone
Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Oksana Plekan
- Elettra-Sincrotrone
Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Ulrich Bangert
- Institute
of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Katrin Dulitz
- Institute
of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Friedemann Landmesser
- Institute
of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Moritz Michelbach
- Institute
of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Alberto Simoncig
- Elettra-Sincrotrone
Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Michele Manfredda
- Elettra-Sincrotrone
Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Simone Spampinati
- Elettra-Sincrotrone
Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Giuseppe Penco
- Elettra-Sincrotrone
Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Richard James Squibb
- Department
of Physics, University of Gothenburg, Origovägen 6 B, 41296 Gothenburg, Sweden
| | - Raimund Feifel
- Department
of Physics, University of Gothenburg, Origovägen 6 B, 41296 Gothenburg, Sweden
| | - Tim Laarmann
- Deutsches
Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- The Hamburg
Centre for Ultrafast Imaging CUI, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Marcel Mudrich
- Department
of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus, Denmark
| | - Kevin C. Prince
- Elettra-Sincrotrone
Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | - Giulio Cerullo
- IFN-CNR
and Dipartimento di Fisica, Politecnico
di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Luca Giannessi
- Elettra-Sincrotrone
Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
- Istituto
Nazionale di Fisica Nucleare, Laboratori
Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati, Roma
| | - Frank Stienkemeier
- Institute
of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Lukas Bruder
- Institute
of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| |
Collapse
|
5
|
Kaneyasu T, Hosaka M, Mano A, Takashima Y, Fujimoto M, Salehi E, Iwayama H, Hikosaka Y, Katoh M. Double-pulsed wave packets in spontaneous radiation from a tandem undulator. Sci Rep 2022; 12:9682. [PMID: 35690656 PMCID: PMC9188554 DOI: 10.1038/s41598-022-13684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
We verify that each wave packet of spontaneous radiation from two undulators placed in series has a double-pulsed temporal profile with pulse spacing which can be controlled at the attosecond level. Using a Mach–Zehnder interferometer operating at ultraviolet wavelengths, we obtain the autocorrelation trace for the spontaneous radiation from the tandem undulator. The results clearly show that the wave packet has a double-pulsed structure, consisting of a pair of 10-cycle oscillations with a variable separation. We also report the characterization of the time delay between the double-pulsed components in different wavelength regimes. The excellent agreement between the independent measurements confirms that a tandem undulator can be used to produce double-pulsed wave packets at arbitrary wavelength.
Collapse
Affiliation(s)
- T Kaneyasu
- SAGA Light Source, Tosu, 841-0005, Japan.
| | - M Hosaka
- Synchrotron Radiation Research Center, Nagoya University, Nagoya, 464-8603, Japan.,National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - A Mano
- Synchrotron Radiation Research Center, Nagoya University, Nagoya, 464-8603, Japan
| | - Y Takashima
- Synchrotron Radiation Research Center, Nagoya University, Nagoya, 464-8603, Japan
| | - M Fujimoto
- Synchrotron Radiation Research Center, Nagoya University, Nagoya, 464-8603, Japan.,Institute for Molecular Science, Okazaki, 444-8585, Japan.,Sokendai (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - E Salehi
- Institute for Molecular Science, Okazaki, 444-8585, Japan
| | - H Iwayama
- Institute for Molecular Science, Okazaki, 444-8585, Japan.,Sokendai (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Y Hikosaka
- Institute of Liberal Arts and Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - M Katoh
- Synchrotron Radiation Research Center, Nagoya University, Nagoya, 464-8603, Japan.,Institute for Molecular Science, Okazaki, 444-8585, Japan.,Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima, 739-0046, Japan
| |
Collapse
|
6
|
Yang F, Zhong Y, Diao H, Ge X, Zheng Y, Zeng Z, Xu Z. Resonance absorption of the inner shell during high-order harmonic generation. OPTICS EXPRESS 2022; 30:6577-6583. [PMID: 35299439 DOI: 10.1364/oe.452148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
In this work, we report the observation of resonance absorption of the inner shell during the high-order harmonic generation (HHG) from xenon (Xe) and krypton (Kr). The absorption peaks show a periodic variation with the change of carrier-envelope phase of driving laser pulses and the delay of two-color laser field, which indicates the absorption peaks come from the collective multielectron effects during the HHG. With the increase of gas pressure, the depth of absorption peak will continue to increase, while due to the phase matching effect, there will be an optimal pressure for the intensity of harmonic signal. Our experimental results pave the way to uncover the physical mechanism of the collective multielectron effects involving inner-shell electrons in the HHG process.
Collapse
|
7
|
Reply to 'Comment on "Coherent control in the extreme ultraviolet and attosecond regime by synchrotron radiation"'. Nat Commun 2021; 12:3782. [PMID: 34145247 PMCID: PMC8213843 DOI: 10.1038/s41467-021-24029-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/17/2021] [Indexed: 11/21/2022] Open
|