1
|
Wagner M, Ołdziejewski R, Rose F, Köder V, Kuhlenkamp C, İmamoğlu A, Schmidt R. Feshbach Resonances in Exciton-Charge-Carrier Scattering in Semiconductor Bilayers. PHYSICAL REVIEW LETTERS 2025; 134:076903. [PMID: 40053979 DOI: 10.1103/physrevlett.134.076903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 09/18/2024] [Accepted: 12/03/2024] [Indexed: 03/09/2025]
Abstract
Feshbach resonances play a vital role in the success of cold atoms investigating strongly correlated physics. The recent observation of their solid-state analog in the scattering of holes and intralayer excitons in transition metal dichalcogenides [I. Schwartz et al., Science 374, 336 (2021)SCIEAS0036-807510.1126/science.abj3831] holds compelling promise for bringing fully controllable interactions to the field of semiconductors. Here, we demonstrate how tunneling-induced layer hybridization can lead to the emergence of two distinct classes of Feshbach resonances in atomically thin semiconductors. Based on microscopic scattering theory we show that these two types of Feshbach resonances allow us to tune interactions between electrons and both short-lived intralayer, as well as long-lived interlayer excitons. We predict the exciton-electron scattering phase shift from first principles and show that the exciton-electron coupling is fully tunable from strong to vanishing interactions. The tunability of interactions opens the avenue to explore Bose-Fermi mixtures in solid-state systems in regimes that were previously only accessible in cold atom experiments.
Collapse
Affiliation(s)
- Marcel Wagner
- Heidelberg University, Institute for Theoretical Physics, D-69120 Heidelberg, Germany
- Heidelberg University, STRUCTURES, D-69117 Heidelberg, Germany
| | | | - Félix Rose
- Heidelberg University, Institute for Theoretical Physics, D-69120 Heidelberg, Germany
- Heidelberg University, STRUCTURES, D-69117 Heidelberg, Germany
- CY Cergy Paris Université, Laboratoire de Physique Théorique et Modélisation, CNRS, F-95302 Cergy-Pontoise, France
| | - Verena Köder
- Heidelberg University, Institute for Theoretical Physics, D-69120 Heidelberg, Germany
| | - Clemens Kuhlenkamp
- ETH Zürich, Institute for Quantum Electronics, CH-8093 Zürich, Switzerland
- Technical University of Munich, Department of Physics, D-85748 Garching, Germany
| | - Ataç İmamoğlu
- ETH Zürich, Institute for Quantum Electronics, CH-8093 Zürich, Switzerland
| | - Richard Schmidt
- Heidelberg University, Institute for Theoretical Physics, D-69120 Heidelberg, Germany
- Heidelberg University, STRUCTURES, D-69117 Heidelberg, Germany
| |
Collapse
|
2
|
Amin M, Koessler ER, Morshed O, Awan F, Cogan NMB, Collison R, Tumiel TM, Girten W, Leiter C, Vamivakas AN, Huo P, Krauss TD. Cavity Controlled Upconversion in CdSe Nanoplatelet Polaritons. ACS NANO 2024; 18:21388-21398. [PMID: 39078943 PMCID: PMC11328175 DOI: 10.1021/acsnano.4c05871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Exciton-polaritons provide a versatile platform for investigating quantum electrodynamics effects in chemical systems, such as polariton-altered chemical reactivity. However, using polaritons in chemical contexts will require a better understanding of their photophysical properties under ambient conditions, where chemistry is typically performed. Here, we used cavity quality factor to control strong light-matter interactions and in particular the excited state dynamics of colloidal CdSe nanoplatelets (NPLs) coupled to a Fabry-Pérot optical cavity. With increasing cavity quality factor, we observe significant population of the upper polariton (UP) state, exemplified by the rare observation of substantial UP photoluminescence (PL). Excitation of the lower polariton (LP) states results in upconverted PL emission from the UP branch due to efficient exchange of population between the LP, UP and the reservoir of dark states present in collectively coupled polaritonic systems. In addition, we measure time scales for polariton dynamics ∼100 ps, implying great potential for NPL based polariton systems to affect photochemical reaction rates. State-of-the-art quantum dynamical simulations show outstanding quantitative agreement with experiments, and thus provide important insight into polariton photophysical dynamics of collectively coupled nanocrystal-based systems. These findings represent a significant step toward the development of practical polariton photochemistry platforms.
Collapse
Affiliation(s)
- Mitesh Amin
- The Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Eric R Koessler
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Ovishek Morshed
- The Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Farwa Awan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Nicole M B Cogan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Robert Collison
- The Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Trevor M Tumiel
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - William Girten
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Christopher Leiter
- Department of Chemistry, Regis University, Denver, Colorado 80221, United States
| | - A Nickolas Vamivakas
- The Institute of Optics, University of Rochester, Rochester, New York 14627, United States
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, United States
| | - Pengfei Huo
- The Institute of Optics, University of Rochester, Rochester, New York 14627, United States
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Todd D Krauss
- The Institute of Optics, University of Rochester, Rochester, New York 14627, United States
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
3
|
Ren P, Huang Z, Luo S, Liu J, Dong X, Zhang H, Li J, Yang Z. Quasi-BICs enhanced second harmonic generation from WSe 2 monolayer. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:3449-3456. [PMID: 39634849 PMCID: PMC11501586 DOI: 10.1515/nanoph-2024-0108] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/20/2024] [Indexed: 12/07/2024]
Abstract
Quasi-bound states in the continuum (quasi-BICs) offer unique advantages in enhancing nonlinear optical processes and advancing the development of active optical devices. Here, the tunable robust quasi-BICs resonances are experimentally achieved through the engineering of multiple-hole Si-metasurface. Notably, the quasi-BICs mode exhibits flat bands with minimal dispersion at a wide range of incident angles, as demonstrated by the angle-resolved spectroscopy measurements. Furthermore, we demonstrate a giant second-harmonic generation (SHG) enhancement by coupling a WSe2 monolayer to the quasi-BICs hosted in the metasurface. Leveraging the strong local electric field and high state density of the observed quasi-BICs, the SHG from the WSe2 monolayer can be enhanced by more than two orders of magnitude. Our work paves the way for effectively enhancing nonlinear optical processes in two dimensional (2D) materials within the framework of silicon photonics and is expected to be applied in nonlinear optical devices.
Collapse
Affiliation(s)
- Peiwen Ren
- College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen361005, China
| | - Zhuo Huang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen361005, China
| | - Song Luo
- College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen361005, China
| | - Jia Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen361005, China
| | - Xiaoxiang Dong
- College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen361005, China
| | - Hua Zhang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen361005, China
| | - Jianfeng Li
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen361005, China
| | - Zhilin Yang
- College of Physical Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen361005, China
| |
Collapse
|
4
|
Elaggoune W, Ersan F, Meddour A. Computational design of the novel Fe-doped single-layer SrS: structural, electro-magnetic, and optical properties. RSC Adv 2024; 14:20668-20682. [PMID: 38952946 PMCID: PMC11215402 DOI: 10.1039/d4ra04352a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 07/03/2024] Open
Abstract
The search for novel intrinsic two-dimensional (2D) magnetic materials is crucial to understand the fundamentals of 2D magnetism and realize next-generation magneto-electric and magneto-optical systems. Using the rigorous framework of spin-polarized density functional theory (SPDFT)-based ab initio calculations, this investigation systematically investigates the effects of a stepwise change in the Fe composition (x) on the structural, electro-magnetic and optical properties of the ordered SrS based single-layer alloys, with x encompassing values from 0 to 1. Our comprehensive analysis revealed that the calculated formation energies, cohesive energies, phonon dispersions, molecular dynamics, and elastic constants of both bare SrS and FeS monolayers indicate their thermodynamic, dynamic, thermal, and mechanical stability in hexagonal and square structures, respectively. Significantly, the introduction of magnetic Fe dopants into the non-magnetic SrS semiconductor enabled the creation of an intrinsic magnetic (FM) state characterized by spin-polarized charge carriers at the Fermi level (E F). As doping increases, the electronic structure shows a noticeable dependence on the chemical composition. It is noteworthy that the systems doped with 0.750 and 1 Fe exhibit metallic-magnetic and metallic non-magnetic properties, respectively, and the rest are half-semiconductors (HSC) according to the GGA approximation. Conversely, the HSE approach shows a transition to HSC for a doping level of 0.750, while others maintain the same behavior. The study of the optical properties shows improvements compared to the bare SrS monolayer through the incorporation of Fe dopants. The bare SrS has light absorption in the ultraviolet region, while the absorption band edges for HSC compounds change from the infrared to visible regions. This study proposes a practical method to tune the properties of the SrS single-layer by selectively adjusting the dopant concentration. Such control is promising for applications in spintronics and optical based nanodevices.
Collapse
Affiliation(s)
- Warda Elaggoune
- Laboratoire de Physique des Matériaux, Université 8 Mai 1945 BP 401 Guelma, 24000 Guelma Algeria
| | - Fatih Ersan
- Department of Physics, Faculty of Science, Aydin Adnan Menderes University Aydin 09010 Turkiye
| | - Athmane Meddour
- Laboratoire de Physique des Matériaux, Université 8 Mai 1945 BP 401 Guelma, 24000 Guelma Algeria
| |
Collapse
|
5
|
Kang H, Ma J, Li J, Zhang X, Liu X. Exciton Polaritons in Emergent Two-Dimensional Semiconductors. ACS NANO 2023; 17:24449-24467. [PMID: 38051774 DOI: 10.1021/acsnano.3c07993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The "marriage" of light (i.e., photon) and matter (i.e., exciton) in semiconductors leads to the formation of hybrid quasiparticles called exciton polaritons with fascinating quantum phenomena such as Bose-Einstein condensation (BEC) and photon blockade. The research of exciton polaritons has been evolving into an era with emergent two-dimensional (2D) semiconductors and photonic structures for their tremendous potential to break the current limitations of quantum fundamental study and photonic applications. In this Perspective, the basic concepts of 2D excitons, optical resonators, and the strong coupling regime are introduced. The research progress of exciton polaritons is reviewed, and important discoveries (especially the recent ones of 2D exciton polaritons) are highlighted. Subsequently, the emergent 2D exciton polaritons are discussed in detail, ranging from the realization of the strong coupling regime in various photonic systems to the discoveries of attractive phenomena with interesting physics and extensive applications. Moreover, emerging 2D semiconductors, such as 2D perovskites (2DPK) and 2D antiferromagnetic (AFM) semiconductors, are surveyed for the manipulation of exciton polaritons with distinct control degrees of freedom (DOFs). Finally, the outlook on the 2D exciton polaritons and their nonlinear interactions is presented with our initial numerical simulations. This Perspective not only aims to provide an in-depth overview of the latest fundamental findings in 2D exciton polaritons but also attempts to serve as a valuable resource to prospect explorations of quantum optics and topological photonic applications.
Collapse
Affiliation(s)
- Haifeng Kang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Jingwen Ma
- Faculty of Science and Engineering, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Junyu Li
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiang Zhang
- Faculty of Science and Engineering, The University of Hong Kong, Hong Kong, SAR, P. R. China
- Department of Physics, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Xiaoze Liu
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, P. R. China
- Wuhan University Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
6
|
Wei K, Liu Q, Tang Y, Ye Y, Xu Z, Jiang T. Charged biexciton polaritons sustaining strong nonlinearity in 2D semiconductor-based nanocavities. Nat Commun 2023; 14:5310. [PMID: 37652932 PMCID: PMC10471760 DOI: 10.1038/s41467-023-41079-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023] Open
Abstract
Controlling the interaction between light and matter at micro- and nano-scale can provide new opportunities for modern optics and optoelectronics. An archetypical example is polariton, a half-light-half-matter quasi particle inheriting simultaneously the robust coherence of light and the strong interaction of matter, which plays an important role in many exotic phenomena. Here, we open up a new kind of cooperative coupling between plasmon and different excitonic complexes in WS2-silver nanocavities, namely plasmon-exciton-trion-charged biexciton four coupling states. Thanks to the large Bohr radius of up to 5 nm, the charged biexciton polariton exhibits strong saturation nonlinearity, ~30 times higher than the neutral exciton polariton. Transient absorption dynamics further reveal the ultrafast many-body interaction nature, with a timescale of <100 fs. The demonstration of biexciton polariton here combines high nonlinearity, simple processing and strong scalability, permitting access for future energy-efficient optical switching and information processing.
Collapse
Affiliation(s)
- Ke Wei
- Institute for Quantum Science and Technology, College of Science, National University of Defense Technology, 410073, Changsha, China.
| | - Qirui Liu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, 410073, Changsha, China
| | - Yuxiang Tang
- Institute for Quantum Science and Technology, College of Science, National University of Defense Technology, 410073, Changsha, China
| | - Yingqian Ye
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, 410073, Changsha, China
| | - Zhongjie Xu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, 410073, Changsha, China
| | - Tian Jiang
- Institute for Quantum Science and Technology, College of Science, National University of Defense Technology, 410073, Changsha, China.
| |
Collapse
|
7
|
Shen K, Sun K, Zhao Y. Simulation of Emission Spectra of Transition Metal Dichalcogenide Monolayers with the Multimode Brownian Oscillator Model. J Phys Chem A 2022; 126:2706-2715. [PMID: 35467864 DOI: 10.1021/acs.jpca.2c01522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The multimode Brownian oscillator model is employed to simulate the emission spectra of transition metal dichalcogenide (TMD) monolayers. Good agreement is obtained between measured and simulated photoluminescence spectra of WSe2, WS2, MoSe2, and MoS2 at various temperatures. The Huang-Rhys factor extracted from the model can be associated with that from the modified semiempirical Varshni equation at high temperatures. Individual mechanisms leading to the unique temperature-dependent emission spectra of those TMDs are validated by the multimode Brownian oscillator (MBO) fitting, while it is, in turn, confirmed that the MBO analysis is an effective method for studying the optical properties of TMD monolayers. Parameters extracted from the MBO fitting can be used to explore exciton-photon-phonon dynamics of TMDs in a more comprehensive model.
Collapse
Affiliation(s)
- Kaijun Shen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kewei Sun
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.,School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
8
|
Li J, Goryca M, Choi J, Xu X, Crooker SA. Many-Body Exciton and Intervalley Correlations in Heavily Electron-Doped WSe 2 Monolayers. NANO LETTERS 2022; 22:426-432. [PMID: 34918936 DOI: 10.1021/acs.nanolett.1c04217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In monolayer transition-metal dichalcogenide semiconductors, many-body correlations can manifest in optical spectra when electron-hole pairs (excitons) are photoexcited into a 2D Fermi sea of mobile carriers. At low carrier densities, the formation of charged excitons (X±) is well documented. However, in WSe2 monolayers, an additional absorption resonance, often called X-', emerges at high electron density. Its origin is not understood. Here, we investigate the X-' state via polarized absorption spectroscopy of gated WSe2 monolayers in magnetic fields to 60T. Field-induced filling and emptying of the lowest optically active Landau level in the K' valley causes repeated quenching of the corresponding optical absorption. Surprisingly, these quenchings are accompanied by absorption changes to higher Landau levels in both K' and K valleys, which are unoccupied. These results cannot be reconciled within a single-particle picture, and demonstrate the many-body nature and intervalley correlations of the X-' quasiparticle state.
Collapse
Affiliation(s)
- Jing Li
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Hubei 430074, China
| | - Mateusz Goryca
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Junho Choi
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Xiaodong Xu
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Scott A Crooker
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|