1
|
Caldwell R, Cui Y, Guo HK, Mandic V, Mariotti A, No JM, Ramsey-Musolf MJ, Sakellariadou M, Sinha K, Wang LT, White G, Zhao Y, An H, Bian L, Caprini C, Clesse S, Cline JM, Cusin G, Fornal B, Jinno R, Laurent B, Levi N, Lyu KF, Martinez M, Miller AL, Redigolo D, Scarlata C, Sevrin A, Haghi BSE, Shu J, Siemens X, Steer DA, Sundrum R, Tamarit C, Weir DJ, Xie KP, Yang FW, Zhou S. Detection of early-universe gravitational-wave signatures and fundamental physics. GENERAL RELATIVITY AND GRAVITATION 2022; 54:156. [PMID: 36465478 PMCID: PMC9712380 DOI: 10.1007/s10714-022-03027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 10/20/2022] [Indexed: 06/17/2023]
Abstract
Detection of a gravitational-wave signal of non-astrophysical origin would be a landmark discovery, potentially providing a significant clue to some of our most basic, big-picture scientific questions about the Universe. In this white paper, we survey the leading early-Universe mechanisms that may produce a detectable signal-including inflation, phase transitions, topological defects, as well as primordial black holes-and highlight the connections to fundamental physics. We review the complementarity with collider searches for new physics, and multimessenger probes of the large-scale structure of the Universe.
Collapse
Affiliation(s)
- Robert Caldwell
- Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 USA
| | - Yanou Cui
- Department of Physics and Astronomy, University of California, Riverside, CA 92521 USA
| | - Huai-Ke Guo
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 USA
| | - Vuk Mandic
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 USA
| | - Alberto Mariotti
- Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, and International Solvay Institutes, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jose Miguel No
- Instituto de Física Teórica UAM/CSIC, C/ Nicolás Cabrera 13- 15, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Michael J. Ramsey-Musolf
- Tsung Dao Lee Institute/Shanghai Jiao Tong University, Shanghai, 200120 People’s Republic of China
- University of Massachusetts, Amherst, MA 01003 USA
| | | | - Kuver Sinha
- Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 USA
| | - Lian-Tao Wang
- Department of Physics, University of Chicago, Chicago, IL 60637 USA
| | - Graham White
- Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583 Japan
| | - Yue Zhao
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 USA
| | - Haipeng An
- Department of Physics, Tsinghua University, Beijing, 100084 People’s Republic of China
- Center for High Energy Physics, Tsinghua University, Beijing, 100084 People’s Republic of China
- Center for High Energy Physics, Peking University, Beijing, 100871 People’s Republic of China
| | - Ligong Bian
- Center for High Energy Physics, Peking University, Beijing, 100871 People’s Republic of China
- Department of Physics and Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing, 401331 People’s Republic of China
| | - Chiara Caprini
- Theoretical Physics Department, University of Geneva, 1211 Geneva, Switzerland
- CERN, Theoretical Physics Department, 1 Esplanade des Particules, 1211 Genève 23, Switzerland
| | - Sebastien Clesse
- Service de Physique Théorique (CP225), University of Brussels (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
| | - James M. Cline
- Department of Physics, McGill University, Montréal, QC H3A2T8 Canada
| | - Giulia Cusin
- Theoretical Physics Department, University of Geneva, 1211 Geneva, Switzerland
- Sorbonne Université, CNRS, UMR 7095, Institut d’Astrophysique de Paris, 75014 Paris, France
| | - Bartosz Fornal
- Department of Chemistry and Physics, Barry University, Miami Shores, FL 33161 USA
| | - Ryusuke Jinno
- Instituto de Física Teórica UAM/CSIC, C/ Nicolás Cabrera 13- 15, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Benoit Laurent
- Department of Physics, McGill University, Montréal, QC H3A2T8 Canada
| | - Noam Levi
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - Kun-Feng Lyu
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 USA
| | - Mario Martinez
- Institut de Física d’Altes Energies, Barcelona Institute of Science and Technology and ICREA, 08193 Barcelona, Spain
| | - Andrew L. Miller
- Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Diego Redigolo
- INFN, Sezione di Firenze Via G. Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Claudia Scarlata
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 USA
| | - Alexander Sevrin
- Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, and International Solvay Institutes, Pleinlaan 2, 1050 Brussels, Belgium
| | - Barmak Shams Es Haghi
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 USA
| | - Jing Shu
- CAS Key Laboratory of Theoretical Physics, Insitute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190 People’s Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
- School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024 People’s Republic of China
- International Center for Theoretical Physics Asia-Pacific, Beijing, Hanzhou, People’s Republic of China
| | - Xavier Siemens
- Department of Physics, Oregon State University, Corvallis, OR 97331 USA
| | - Danièle A. Steer
- Laboratoire Astroparticule et Cosmologie, CNRS, Université Paris Cité, 75013 Paris, France
| | | | - Carlos Tamarit
- Physik-Department T70, Technische Universität München, James-Franck-Straße, 85748 Garching, Germany
| | - David J. Weir
- Department of Physics and Helsinki Institute of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
| | - Ke-Pan Xie
- Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68588 USA
| | - Feng-Wei Yang
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 USA
| | - Siyi Zhou
- Department of Physics, Kobe University, Kobe, 657-8501 Japan
| |
Collapse
|
2
|
East WE. Vortex String Formation in Black Hole Superradiance of a Dark Photon with the Higgs Mechanism. PHYSICAL REVIEW LETTERS 2022; 129:141103. [PMID: 36240398 DOI: 10.1103/physrevlett.129.141103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/18/2022] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
Black hole superradiance, which only relies on gravitational interactions, can provide a powerful probe of the existence of ultralight bosons that are weakly coupled to ordinary matter. However, as a boson cloud grows through superradiance, nonlinear effects from interactions with itself or other fields may become important. As a representative example of this, we use nonlinear evolutions to study black hole superradiance of a vector boson that attains a mass, via a coupling to a complex scalar, through the Higgs mechanism. For the cases considered, we find that the superradiant instability can lead to a transient period where the scalar field reaches its symmetry restoration value, leading to the formation of closed vortex strings, the temporary disruption of the exponential growth of the cloud, and an explosive outburst of energy. After the cloud loses sufficient mass, the superradiant growth resumes, and the cycle repeats. Thus, the black hole will be spun down but, potentially, at a much lower rate compared to when nonlinear effects are unimportant and with the liberated energy going primarily into bosonic radiation instead of gravitational waves.
Collapse
Affiliation(s)
- William E East
- Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
| |
Collapse
|
4
|
Zhang J, Lyu Z, Huang J, Johnson MC, Sagunski L, Sakellariadou M, Yang H. First Constraints on Nuclear Coupling of Axionlike Particles from the Binary Neutron Star Gravitational Wave Event GW170817. PHYSICAL REVIEW LETTERS 2021; 127:161101. [PMID: 34723593 DOI: 10.1103/physrevlett.127.161101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Light axion fields, if they exist, can be sourced by neutron stars due to their coupling to nuclear matter, and play a role in binary neutron star mergers. We report on a search for such axions by analyzing the gravitational waves from the binary neutron star inspiral GW170817. We find no evidence of axions in the sampled parameter space. The null result allows us to impose constraints on axions with masses below 10^{-11} eV by excluding the ones with decay constants ranging from 1.6×10^{16} to 10^{18} GeV at a 3σ confidence level. Our analysis provides the first constraints on axions from neutron star inspirals, and rules out a large region in parameter space that has not been probed by the existing experiments.
Collapse
Affiliation(s)
- Jun Zhang
- Theoretical Physics, Blackett Laboratory, Imperial College, London SW7 2AZ, United Kingdom
- Illinois Center for Advanced Studies of the Universe & Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Zhenwei Lyu
- University of Guelph, Guelph, Ontario N2L 3G1, Canada
- Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
| | - Junwu Huang
- Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
| | - Matthew C Johnson
- Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
- Department of Physics and Astronomy, York University, Toronto, Ontario M3J 1P3, Canada
| | - Laura Sagunski
- Institute for Theoretical Physics, Goethe University, 60438 Frankfurt am Main, Germany
| | - Mairi Sakellariadou
- Theoretical Particle Physics and Cosmology Group, Physics Department, King's College London, University of London, Strand, London WC2R 2LS, United Kingdom
- Theoretical Physics Department, CERN, CH-1211 Geneva, Switzerland
| | - Huan Yang
- University of Guelph, Guelph, Ontario N2L 3G1, Canada
- Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
| |
Collapse
|