1
|
Kosgallana C, Wijesinghe S, Senanayake M, Mohottalalage SS, Ohl M, Zolnierczuk P, Grest GS, Perahia D. From Molecular Constraints to Macroscopic Dynamics in Associative Networks Formed by Ionizable Polymers: A Neutron Spin Echo and Molecular Dynamics Simulations Study. ACS POLYMERS AU 2024; 4:149-156. [PMID: 38618001 PMCID: PMC11010251 DOI: 10.1021/acspolymersau.3c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 04/16/2024]
Abstract
The association of ionizable polymers strongly affects their motion in solutions, where the constraints arising from clustering of the ionizable groups alter the macroscopic dynamics. The interrelation between the motion on multiple length and time scales is fundamental to a broad range of complex fluids including physical networks, gels, and polymer-nanoparticle complexes where long-lived associations control their structure and dynamics. Using neutron spin echo and fully atomistic, multimillion atom molecular dynamics (MD) simulations carried out to times comparable to that of chain segmental motion, the current study resolves the dynamics of networks formed by suflonated polystryene solutions for sulfonation fractions 0 ≤ f ≤ 0.09 across time and length scales. The experimental dynamic structure factors were measured and compared with computational ones, calculated from MD simulations, and analyzed in terms of a sum of two exponential functions, providing two distinctive time scales. These time constants capture confined motion of the network and fast dynamics of the highly solvated segments. A unique relationship between the polymer dynamics and the size and distribution of the ionic clusters was established and correlated with the number of polymer chains that participate in each cluster. The correlation of dynamics in associative complex fluids across time and length scales, enabled by combining the understanding attained from reciprocal space through neutron spin echo and real space, through large scale MD studies, addresses a fundamental long-standing challenge that underline the behavior of soft materials and affect their potential uses.
Collapse
Affiliation(s)
- Chathurika Kosgallana
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Sidath Wijesinghe
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
- Department of ChemistryAppalachian State University, Boone, North Carolina 26808, United States
| | - Manjula Senanayake
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Supun S Mohottalalage
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Michael Ohl
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Piotr Zolnierczuk
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Gary S Grest
- Sandia National Laboratories, Albuquerque, New Mexico 87175, United States
| | - Dvora Perahia
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
- Department of Physics, Clemson University, Clemson, South Carolina 29631, United States
| |
Collapse
|
2
|
Kruteva M, Allgaier J, Monkenbusch M, Valiullin R, Hoffmann I, Richter D. Cooperative Dynamics of Highly Entangled Linear Polymers within the Entanglement Tube. ACS Macro Lett 2024; 13:335-340. [PMID: 38427591 PMCID: PMC10956489 DOI: 10.1021/acsmacrolett.3c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
We present a quantitative comparison of the dynamic structure factors from unentangled and strongly entangled poly(butylene oxide) (PBO) melts. As expected, the low molecular weight PBO displays Rouse dynamics, however, with very significant subdiffusive center-of-mass diffusion. The spectra from high molecular weight entangled PBO can be very well described by the dynamic structure factor based on the concept of local reptation, including the Rouse dynamics within the tube and allowing for non-Gaussian corrections. Comparing quantitatively the spectra from both polymers leads to the surprising result that their spectra differ only by the contribution of classical Rouse diffusion for the low molecular weight melt. The subdiffusive component is common for both the low and high molecular weight PBO melts, indicating that in both melts the same interchain potential is active, thereby supporting the validity of the Generalized Langevin Equation approach.
Collapse
Affiliation(s)
- Margarita Kruteva
- Jülich
Centre for Neutron Science (JCNS-1) and Institute for Biological Information
Processing (IBI-8), Forschungszentrum Jülich
GmbH, 52428 Jülich, Germany
| | - Jürgen Allgaier
- Jülich
Centre for Neutron Science (JCNS-1) and Institute for Biological Information
Processing (IBI-8), Forschungszentrum Jülich
GmbH, 52428 Jülich, Germany
| | - Michael Monkenbusch
- Jülich
Centre for Neutron Science (JCNS-1) and Institute for Biological Information
Processing (IBI-8), Forschungszentrum Jülich
GmbH, 52428 Jülich, Germany
| | - Rustem Valiullin
- Felix
Bloch Institute for Solid State Physics, Leipzig University, 04103 Leipzig, Germany
| | - Ingo Hoffmann
- Institut
Laue-Langevin (ILL), 71 avenue des Martyrs, 38000 Grenoble, France
| | - Dieter Richter
- Jülich
Centre for Neutron Science (JCNS-2) and Peter Grünberg Institute
(PGI-4), Forschungszentrum Jülich
GmbH, 52428 Jülich, Germany
| |
Collapse
|
3
|
Hu M, Chen H, Wang H, Burov S, Barkai E, Wang D. Triggering Gaussian-to-Exponential Transition of Displacement Distribution in Polymer Nanocomposites via Adsorption-Induced Trapping. ACS NANO 2023; 17:21708-21718. [PMID: 37879044 DOI: 10.1021/acsnano.3c06897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
In many disordered systems, the diffusion of classical particles is described by a displacement distribution P(x, t) that displays exponential tails instead of Gaussian statistics expected for Brownian motion. However, the experimental demonstration of control of this behavior by increasing the disorder strength has remained challenging. In this work, we explore the Gaussian-to-exponential transition by using diffusion of poly(ethylene glycol) (PEG) in attractive nanoparticle-polymer mixtures and controlling the volume fraction of the nanoparticles. In this work, we find "knobs", namely nanoparticle concentration and interaction, which enable the change in the shape of P(x,t) in a well-defined way. The Gaussian-to-exponential transition is consistent with a modified large deviation approach for a continuous time random walk and also with Monte Carlo simulations involving a microscopic model of polymer trapping via reversible adsorption to the nanoparticle surface. Our work bears significance in unraveling the fundamental physics behind the exponential decay of the displacement distribution at the tails, which is commonly observed in soft materials and nanomaterials.
Collapse
Affiliation(s)
- Ming Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
- University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Hongbo Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | - Hongru Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
- University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Stanislav Burov
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Eli Barkai
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dapeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
- University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
4
|
Sharma A, Kruteva M, Allgaier J, Hoffmann I, Falus P, Monkenbusch M, Richter D. Chain Confinement and Anomalous Diffusion in the Cross over Regime between Rouse and Reptation. ACS Macro Lett 2022; 11:1343-1348. [PMID: 36409674 DOI: 10.1021/acsmacrolett.2c00608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
By neutron spin echo (NSE) and pulsed field gradient (PFG) NMR, we study the dynamics of a polyethylene-oxide melt (PEO) with a molecular weight in the transition regime between Rouse and reptation dynamics. We analyze the data with a Rouse mode analysis allowing for reduced long wavelength Rouse modes amplitudes. For short times, subdiffusive center-of-mass mean square displacement ⟨rcom2(t)⟩ was allowed. This approach captures the NSE data well and provides accurate information on the topological constraints in a chain length regime, where the tube model is inapplicable. As predicted by reptation for the polymer ⟨rcom2(t)⟩, we experimentally found the subdiffusive regime with an exponent close to μ=12, which, however, crosses over to Fickian diffusion not at the Rouse time, but at a later time, when the ⟨rcom2(t)⟩ has covered a distance related to the tube diameter.
Collapse
Affiliation(s)
- Aakash Sharma
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-1: Neutron Scattering and Biological Matter), 52425Jülich, Germany
| | - Margarita Kruteva
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-1: Neutron Scattering and Biological Matter), 52425Jülich, Germany
| | - Jürgen Allgaier
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-1: Neutron Scattering and Biological Matter), 52425Jülich, Germany
| | - Ingo Hoffmann
- Institut Max von Laue-Paul Langevin (ILL), 71 avenue des Martyrs, CS 20156, Cedex 9, F-38042Grenoble, France
| | - Peter Falus
- Institut Max von Laue-Paul Langevin (ILL), 71 avenue des Martyrs, CS 20156, Cedex 9, F-38042Grenoble, France
| | - Michael Monkenbusch
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-1: Neutron Scattering and Biological Matter), 52425Jülich, Germany
| | - Dieter Richter
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-1: Neutron Scattering and Biological Matter), 52425Jülich, Germany
| |
Collapse
|
5
|
Cao XZ, Merlitz H, Wu CX, Forest MG. Screening confinement of entanglements: Role of a self-propelling end inducing ballistic chain reptation. Phys Rev E 2022; 106:L022501. [PMID: 36110008 DOI: 10.1103/physreve.106.l022501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Synthetic and natural nanomaterials with self-propelling mechanisms continue to be explored to boost chain mobility beyond normal reptation in the crowded environments of entangled chains. Here we employ scaling theory and numerical simulations to demonstrate that activating one chain end of a singular or isolated chain boosts entanglement-constrained chain reptation from the one-dimensional diffusive mobility as described by the de Gennes-Edwards-Doi model to ballistic motion along the entanglement tube contour. The active chain is effectively screened from the constraint of entanglements on length scales exceeding the tube size.
Collapse
Affiliation(s)
- Xue-Zheng Cao
- Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
| | - Holger Merlitz
- Leibniz-Institut für Polymerforschung Dresden, 01069 Dresden, Germany
| | - Chen-Xu Wu
- Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
| | - M Gregory Forest
- Departments of Mathematics, Applied Physical Sciences, Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3250, USA
| |
Collapse
|
6
|
Anomalous Dynamics in Macromolecular Liquids. Polymers (Basel) 2022; 14:polym14050856. [PMID: 35267678 PMCID: PMC8912788 DOI: 10.3390/polym14050856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/06/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Macromolecular liquids display short-time anomalous behaviors in disagreement with conventional single-molecule mean-field theories. In this study, we analyze the behavior of the simplest but most realistic macromolecular system that displays anomalous dynamics, i.e., a melt of short homopolymer chains, starting from molecular dynamics simulation trajectories. Our study sheds some light on the microscopic molecular mechanisms responsible for the observed anomalous behavior. The relevance of the correlation hole, a unique property of polymer liquids, in relation to the observed subdiffusive dynamics, naturally emerges from the analysis of the van Hove distribution functions and other properties.
Collapse
|
7
|
Monkenbusch M. Polymers: When S(Q,t) is not what you think! The role of dynamic RPA. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202227201006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Investigating a (polymeric) soft-matter system with several components often is aimed at the observation of the motions/mobilities of one of the components. The normal approach to this request in the context of quasielastic neutron scattering (e.g. NSE) is to put contrast on the targeted component, typically by leaving it hydrogenated and have the rest (surrounding, matrix) deuterated. In simple systems with only one molecular species as a homo-polymer melt with a few of the molecules contrasted (e.g. 10% h in 90% d) -provided the h-and d-molecular varieties behave sufficiently equalthis strategy yields a valid single chain (molecule) structure factor S(Q,t)/S(Q), even for a 50/50% mixture. However, if the component of interest and the matrix are of different kind, unexpected distortions of the observed S(Q,t) may occur. Interpretation of such results in terms of the single chain structure factor would then lead to erroneous conclusions. In this contribution the conditions, under which these distortions will occur, are discussed and how dynamic RPA may help to cope with them is explained. A practical method to apply this correction to polymer and similar problems is presented and an experimental verification is discussed [1, 12].
Collapse
|
8
|
Kruteva M, Zamponi M, Hoffmann I, Allgaier J, Monkenbusch M, Richter D. Non-Gaussian and Cooperative Dynamics of Entanglement Strands in Polymer Melts. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Margarita Kruteva
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-1: Neutron Scattering and Biological Matter), 52425 Jülich, Germany
| | - Michaela Zamponi
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at MLZ, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Ingo Hoffmann
- Institut Laue-Langevin (ILL), B.P. 156, F-38042 Grenoble Cedex 9, France
| | - Jürgen Allgaier
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-1: Neutron Scattering and Biological Matter), 52425 Jülich, Germany
| | - Michael Monkenbusch
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-1: Neutron Scattering and Biological Matter), 52425 Jülich, Germany
| | - Dieter Richter
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS-1: Neutron Scattering and Biological Matter), 52425 Jülich, Germany
| |
Collapse
|
9
|
Shukla P, Ahamad N, Debnath P. Diffusing Diffusivity
in Dynamics of Unentangled Polymer Melts. MACROMOL THEOR SIMUL 2021. [DOI: 10.1002/mats.202100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Prakhar Shukla
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee Uttarakhand 247667 India
| | - Nabi Ahamad
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee Uttarakhand 247667 India
| | - Pallavi Debnath
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee Uttarakhand 247667 India
| |
Collapse
|
10
|
Mortensen K, Borger AL, Kirkensgaard JJK, Huang Q, Hassager O, Almdal K. Small-Angle Neutron Scattering Study of the Structural Relaxation of Elongationally Oriented, Moderately Stretched Three-Arm Star Polymers. PHYSICAL REVIEW LETTERS 2021; 127:177801. [PMID: 34739279 DOI: 10.1103/physrevlett.127.177801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
We present structural relaxation studies of a polystyrene star polymer after cessation of high-rate extensional flow. During the steady-state flow, the scattering pattern shows two sets of independent correlations peaks, reflecting the structure of a polymer confined in a fully oriented three-armed tube. Upon cessation of flow, the relaxation constitutes three distinct regimes. In a first regime, the perpendicular correlation peaks disappear, signifying disruption of the virtual tube. In a second regime, broad scattering arcs emerge, reflecting relaxation from highly aligned chains to more relaxed, still anisotropic form. New entanglements dominate the last relaxation regime where the scattering pattern evolves to a successively elliptical and circular pattern, reflecting relaxation via reptation.
Collapse
Affiliation(s)
- Kell Mortensen
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Anine L Borger
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jacob J K Kirkensgaard
- Niels Bohr Institute and Dept. Food Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Qian Huang
- Polymer Research Institute, Sichuan University, 610065 Chengdu, China
| | - Ole Hassager
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Kristoffer Almdal
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|