1
|
Xiao Y, Li T, Zhang Y, Zheng A. Thermo-optic effect induced tunable phase controlled propagation of solitons in a Jaynes-Cummings-Hubbard model. OPTICS EXPRESS 2024; 32:26596-26608. [PMID: 39538521 DOI: 10.1364/oe.525317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/23/2024] [Indexed: 11/16/2024]
Abstract
The manipulation of light propagation has garnered significant attention in discrete periodic photon structures. In this study, we investigate the impact of an adjustable phase on soliton behavior within a one-dimensional (1D) coupled cavity array. Each cavity is doped with two-level qubits, and the system can be effectively described by a Jaynes-Cummings-Hubbard model (JC-Hubbard model). By numerically exploring the photonic phase, we reveal that it introduces an additional degree of flexibility in controlling soliton propagation. This flexibility encompasses dispersion relations, propagation direction, transverse velocity, and stability conditions. We observe that soliton styles transition with changes in the tunneling phase. At a phase of 0, solitons form due to the delicate balance between spatial dispersion and system nonlinearity. When the phase increases to π/2, solitons vanish because spatial dispersion is significantly suppressed. The underlying theory explains this suppression, which arises from the opposite phase ±θ. Interestingly, standard temporal solitons emerge in the discrete periodic cavity array. Our investigation has broader applicability extending to various discrete structures, encompassing but not limited to waveguide arrays and optomechanical cavity arrays.
Collapse
|
2
|
Ren ZQ, Lu XL, Xiang ZL. Heisenberg-limited spin squeezing in a hybrid system with silicon-vacancy centers. OPTICS EXPRESS 2024; 32:4013-4026. [PMID: 38297610 DOI: 10.1364/oe.499299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024]
Abstract
In this paper, we investigate the spin squeezing in a hybrid quantum system consisting of a Silicon-Vacancy (SiV) center ensemble coupled to a diamond acoustic waveguide via the strain interaction. Two sets of non-overlapping driving fields, each contains two time-dependent microwave fields, are applied to this hybrid system. By modulating these fields, the one-axis twist (OAT) interaction and two-axis two-spin (TATS) interaction can be independently realized. In the latter case the squeezing parameter scales to spin number as ξ R2∼1.61N -0.64 with the consideration of dissipation, which is very close to the Heisenberg limit. Furthermore, this hybrid system allows for the study of spin squeezing generated by the simultaneous presence of OAT and TATS interactions, which reveals sensitivity to the parity of the number of spins Ntot, whether it is even or odd. Our scheme enriches the approach for generating Heisenberg-limited spin squeezing in spin-phonon hybrid systems and offers the possibility for future applications in quantum information processing.
Collapse
|
3
|
Hei XL, Li PB, Pan XF, Nori F. Enhanced Tripartite Interactions in Spin-Magnon-Mechanical Hybrid Systems. PHYSICAL REVIEW LETTERS 2023; 130:073602. [PMID: 36867822 DOI: 10.1103/physrevlett.130.073602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Coherent tripartite interactions among degrees of freedom of completely different nature are instrumental for quantum information and simulation technologies, but they are generally difficult to realize and remain largely unexplored. Here, we predict a tripartite coupling mechanism in a hybrid setup comprising a single nitrogen-vacancy (NV) center and a micromagnet. We propose to realize direct and strong tripartite interactions among single NV spins, magnons, and phonons via modulating the relative motion between the NV center and the micromagnet. Specifically, by introducing a parametric drive (two-phonon drive) to modulate the mechanical motion (such as the center-of-mass motion of a NV spin in diamond trapped in an electrical trap or a levitated micromagnet in a magnetic trap), we can obtain a tunable and strong spin-magnon-phonon coupling at the single quantum level, with up to 2 orders of magnitude enhancement for the tripartite coupling strength. This enables, for example, tripartite entanglement among solid-state spins, magnons, and mechanical motions in quantum spin-magnonics-mechanics with realistic experimental parameters. This protocol can be readily implemented with the well-developed techniques in ion traps or magnetic traps and could pave the way for general applications in quantum simulations and information processing based on directly and strongly coupled tripartite systems.
Collapse
Affiliation(s)
- Xin-Lei Hei
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Peng-Bo Li
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Xue-Feng Pan
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Quantum Computing (RQC), 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
4
|
Meng Y, Lin S, Shi BJ, Wei B, Yang L, Yan B, Zhu Z, Xi X, Wang Y, Ge Y, Yuan SQ, Chen J, Liu GG, Sun HX, Chen H, Yang Y, Gao Z. Spinful Topological Phases in Acoustic Crystals with Projective PT Symmetry. PHYSICAL REVIEW LETTERS 2023; 130:026101. [PMID: 36706409 DOI: 10.1103/physrevlett.130.026101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/09/2022] [Indexed: 06/18/2023]
Abstract
For the classification of topological phases of matter, an important consideration is whether a system is spinless or spinful, as these two classes have distinct symmetry algebra that gives rise to fundamentally different topological phases. However, only recently has it been realized theoretically that in the presence of gauge symmetry, the algebraic structure of symmetries can be projectively represented, which possibly enables the switch between spinless and spinful topological phases. Here, we report the experimental demonstration of this idea by realizing spinful topological phases in "spinless" acoustic crystals with projective space-time inversion symmetry. In particular, we realize a one-dimensional topologically gapped phase characterized by a 2Z winding number, which features double-degenerate bands in the entire Brillouin zone and two pairs of degenerate topological boundary modes. Our Letter thus overcomes a fundamental constraint on topological phases by spin classes.
Collapse
Affiliation(s)
- Yan Meng
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuxin Lin
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin-Jie Shi
- Research Center of Fluid Machinery Engineering and Technology, School of Physics and Electronics Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bin Wei
- SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Linyun Yang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bei Yan
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhenxiao Zhu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiang Xi
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yin Wang
- Research Center of Fluid Machinery Engineering and Technology, School of Physics and Electronics Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yong Ge
- Research Center of Fluid Machinery Engineering and Technology, School of Physics and Electronics Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shou-Qi Yuan
- Research Center of Fluid Machinery Engineering and Technology, School of Physics and Electronics Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jingming Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Gui-Geng Liu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hong-Xiang Sun
- Research Center of Fluid Machinery Engineering and Technology, School of Physics and Electronics Engineering, Jiangsu University, Zhenjiang 212013, China
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongsheng Chen
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China; International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China; Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China; Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing 312000, China
| | - Yihao Yang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China; International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China; Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China; Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing 312000, China
| | - Zhen Gao
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Ren ZQ, Feng CR, Xiang ZL. Deterministic generation of entanglement states between Silicon-Vacancy centers via acoustic modes. OPTICS EXPRESS 2022; 30:41685-41697. [PMID: 36366639 DOI: 10.1364/oe.468293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
We propose a scheme to entangle Silicon-Vacancy (SiV) centers embedded in a diamond acoustic waveguide. These SiV centers interact with acoustic modes of the waveguide via strain-induced coupling. Through Morris-Shore transformation, the Hilbert space of this hybrid quantum system can be factorized into a closed subspace in which we can deterministically realize the symmetrical Dicke states between distant SiV centers with high fidelity. In addition, the generation of entangled Dicke states can be controlled by manipulating the strength and frequency of the driving field applied on SiV centers. This protocol provides a promising way to prepare multipartite entanglement in spin-phonon hybrid systems and could have broad applications for future quantum technologies.
Collapse
|
6
|
Wen P, Mao X, Wang M, Wang C, Li GQ, Long GL. Simultaneous ground-state cooling of multiple degenerate mechanical modes through the cross-Kerr effect. OPTICS LETTERS 2022; 47:5529-5532. [PMID: 37219261 DOI: 10.1364/ol.473885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/08/2022] [Indexed: 05/24/2023]
Abstract
Simultaneous ground-state cooling of multiple degenerate mechanical modes is a difficult issue in optomechanical systems, owing to the existence of the dark mode effect. Here we propose a universal and scalable method to break the dark mode effect of two degenerate mechanical modes by introducing cross-Kerr (CK) nonlinearity. At most, four stable steady states can be achieved in our scheme in the presence of the CK effect, unlike the bistable behavior of the standard optomechanical system. Under a constant input laser power, the effective detuning and mechanical resonant frequency can be modulated by the CK nonlinearity, resulting in an optimal CK coupling strength for cooling. Similarly, there will be an optimal input laser power for cooling when the CK coupling strength stays fixed. Our scheme can be extended to break the dark mode effect of multiple degenerate mechanical modes by introducing more than one CK effect. To fulfill the requirement of the simultaneous ground-state cooling of N multiple degenerate mechanical modes, N - 1 CK effects with different strengths are needed. Our proposal provides new, to the best of our knowledge. insights into dark mode control and might pave the way to manipulating multiple quantum states in a macroscopic system.
Collapse
|
7
|
Leng SY, Lü DY, Yang SL, Ma M, Dong YZ, Zhou BF, Zhou Y. Simulating the Dicke lattice model and quantum phase transitions using an array of coupled resonators. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:415402. [PMID: 35896108 DOI: 10.1088/1361-648x/ac84bd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
A proposal for simulating the Dicke-Lattice model in a mechanics-controlled hybrid quantum system is studied here. An array of coupled mechanical resonators (MRs) can homogeneously interact with a group of trapped Bose-Einstein condensates (BECs) via the gradient magnetic field induced by the oscillating resonators. Assisted by the classical dichromatic radio-wave fields, each subsystem with the BEC-MR interaction can mimic the Dicke type spin-phonon interaction, and the whole system is therefore extended to a lattice of Dicke models with the additional adjacent phonon-phonon hopping couplings. In view of this lattice model with theZ2symmetry, its quantum phase transitions behavior can be controlled by this periodic phonon-phonon interactions in the momentum space. This investigation may be considered as a fresh attempt on manipulating the critical behaviors of the collective spins through the external mechanical method.
Collapse
Affiliation(s)
- Si-Yun Leng
- School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
| | - Dong-Yan Lü
- School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
| | - Shuang-Liang Yang
- School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
| | - Ming Ma
- School of Electrical and Information Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
| | - Yan-Zhang Dong
- School of Automobile Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
| | - Bo-Fang Zhou
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
| | - Yuan Zhou
- School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, People's Republic of China
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| |
Collapse
|
8
|
Tan J, Xu X, Lu J, Zhou L. Few-photon optical diode in a chiral waveguide. OPTICS EXPRESS 2022; 30:28696-28709. [PMID: 36299059 DOI: 10.1364/oe.464588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/11/2022] [Indexed: 06/16/2023]
Abstract
We study the coherent transport of one or two photons in a one-dimensional waveguide chirally coupled to a nonlinear resonator. Analytic solutions of the one-photon and two-photon scattering is derived. Although the resonator acts as a non-reciprocal phase shifter, light transmission is reciprocal at one-photon level. However, the forward and reverse transmitted probabilities for two photons incident from either the left side or the right side of the nonlinear resonator are nonreciprocal due to the energy redistribution of the two-photon bound state. Hence, the nonlinear resonator acts as an optical diode at two-photon level.
Collapse
|
9
|
Zhang QH, Ying Y, Zhang ZZ, Su ZJ, Ma H, Qin GQ, Song XX, Guo GP. Graphene-Based Nanoelectromechanical Periodic Array with Tunable Frequency. NANO LETTERS 2021; 21:8571-8578. [PMID: 34613727 DOI: 10.1021/acs.nanolett.1c01866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phononic crystals (PnCs) have attracted much attention due to their great potential for dissipation engineering and propagation manipulation of phonons. Notably, the excellent electrical and mechanical properties of graphene make it a promising material for nanoelectromechanical resonators. Transferring a graphene flake to a prepatterned periodic mechanical structure enables the realization of a PnC with on-chip scale. Here, we demonstrate a nanoelectromechanical periodic array by anchoring a graphene membrane to a 9 × 9 array of standing nanopillars. The device exhibits a quasi-continuous frequency spectrum with resonance modes distributed from ∼120 MHz to ∼980 MHz. Moreover, the resonant frequencies of these modes can be electrically tuned by varying the voltage applied to the gate electrode sitting underneath. Simulations suggest that the observed band-like spectrum provides an experimental evidence for PnC formation. Our architecture has large fabrication flexibility, offering a promising platform for investigations on PnCs with electrical accessibility and tunability.
Collapse
Affiliation(s)
- Qing-Hang Zhang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yue Ying
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhuo-Zhi Zhang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zi-Jia Su
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - He Ma
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guo-Quan Qin
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiang-Xiang Song
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guo-Ping Guo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Origin Quantum Computing Company Limited, Hefei, Anhui 230088, China
| |
Collapse
|
10
|
Yang J, Yang Z, Zhao C, Peng R, Chao S, Zhou L. Nonlinearity enhancement and photon blockade in hybrid optomechanical systems. OPTICS EXPRESS 2021; 29:36167-36179. [PMID: 34809035 DOI: 10.1364/oe.438227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
The nonlinear optomechanical coupling is an attracting characteristic in the field of optomechanics. However, the strength of single photon optomechanical coupling is still within weak coupling regime. Using the optomechanical coupling to achieve strong nonlinear interaction between photons is still a challenge. In this paper, we propose a scheme by employing optomechanical and spin-mechanical interactions to enhance the nonlinearity of photons. An effective Hamiltonian is derived, which shows that the self-Kerr and cross-Kerr nonlinearity strengths can be enhanced by adjusting the classical pumping or enhancing the spin-mechanical coupling strength. In addition, we investigate the potential usage of the nonlinearity in the photon blockade. We demonstrate that the single and two photon blockades can occur in two super modes.
Collapse
|