1
|
Williams JR, Ullrich CA. Stability of the Long-Range Corrected Exchange-Correlation Functional and the Proca Procedural Functional in Time-Dependent Density-Functional Theory. J Chem Theory Comput 2025. [PMID: 40272478 DOI: 10.1021/acs.jctc.5c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Excitonic effects in the optical absorption spectra of solids can be described with time-dependent density-functional theory (TDDFT) in the linear-response regime, using a simple class of approximate, long-range corrected (LRC) exchange-correlation functionals. It was recently demonstrated that the LRC approximation can also be employed in real-time TDDFT to describe exciton dynamics. Here, we investigate the numerical stability of the time-dependent LRC approach using a two-dimensional model solid. It is found that the time-dependent Kohn-Sham equation with an LRC vector potential becomes more and more prone to instabilities for increasing exciton binding energies. The origin of these instabilities is traced back to time-averaged violations of the zero-force theorem, which leads to a simple and robust numerical stabilization scheme. This explains and justifies a recently proposed method by Dewhurst, J. K. [ Phys. Rev. B 2025, 111, L060302] to stabilize the LRC vector potential, known as the Proca procedural functional.
Collapse
Affiliation(s)
- Jared R Williams
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Carsten A Ullrich
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
2
|
Boyer NJ, Shepard C, Zhou R, Xu J, Kanai Y. Machine-Learning Electron Dynamics with Moment Propagation Theory: Application to Optical Absorption Spectrum Computation Using Real-Time TDDFT. J Chem Theory Comput 2025; 21:114-123. [PMID: 39729524 DOI: 10.1021/acs.jctc.4c00907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
We present an application of our new theoretical formulation of quantum dynamics, moment propagation theory (MPT) (Boyer et al., J. Chem. Phys. 160, 064113 (2024)), for employing machine-learning techniques to simulate the quantum dynamics of electrons. In particular, we use real-time time-dependent density functional theory (RT-TDDFT) simulation in the gauge of the maximally localized Wannier functions (MLWFs) for training the MPT equation of motion. Spatially localized time-dependent MLWFs provide a concise representation that is particularly convenient for the MPT expressed in terms of increasing orders of moments. The equation of motion for these moments can be integrated in time, while the analytical expressions are quite involved. In this work, machine-learning techniques were used to train the second-order time derivatives of the moments using first-principles data from the RT-TDDFT simulation, and this MPT enabled us to perform electron dynamics efficiently. The application to computing optical absorption spectrum for various systems was demonstrated as a proof-of-principles example of this approach. In addition to isolated molecules (water, benzene, and ethene), condensed matter systems (liquid water and crystalline silicon) were studied, and we also explored how the principle of the nearsightedness of electrons can be employed in this context.
Collapse
Affiliation(s)
- Nicholas J Boyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Christopher Shepard
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ruiyi Zhou
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jianhang Xu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yosuke Kanai
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
3
|
Reeves CC, Vlček V. Real-Time Dyson-Expansion Scheme: Efficient Inclusion of Dynamical Correlations in Nonequilibrium Spectral Properties. PHYSICAL REVIEW LETTERS 2024; 133:226902. [PMID: 39672150 DOI: 10.1103/physrevlett.133.226902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/22/2024] [Accepted: 10/21/2024] [Indexed: 12/15/2024]
Abstract
Time-resolved photoemission spectroscopy is the key technique to probe the real-time nonequilibrium dynamics of electronic states. Theoretical predictions of the time dependent spectral function for realistic systems is however, a challenge. Employing the Kadanoff-Baym equations to find this quantity results in a cubic scaling in the total number of time steps, quickly becoming prohibitive and often fail quantitatively and even qualitatively. In comparison, mean-field methods have more favorable numerical scaling both in the number of time steps and in the complexity associated with the cost of evolving for a single time step, however they miss key spectral properties such as emergent spectral features. Here we present a scheme that allows for the inclusion of dynamical correlations to the spectral function while maintaining the same scaling in the number of time steps as for mean-field approaches, while capturing the emergent physics. Further, the scheme can be efficiently implemented on top of equilibrium real-time many-body perturbation theory schemes and codes. We see excellent agreement with exact results for test systems. Furthermore, we exemplify the method on a periodic system and demonstrate clear evidence that our proposed scheme produces complex spectral features including excitonic band replicas, features that are not observed using static mean-field approaches.
Collapse
|
4
|
Xu Y, Wang Y, Yu S, Sun D, Dai Y, Huang B, Wei W. High-Temperature Excitonic Condensation in 2D Lattice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404436. [PMID: 39239846 PMCID: PMC11538676 DOI: 10.1002/advs.202404436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/24/2024] [Indexed: 09/07/2024]
Abstract
Exploration of high-temperature bosonic condensation is of significant importance for the fundamental many-body physics and applications in nanodevices, which, however, remains a huge challenge. Here, in combination of many-body perturbation theory and first-principles calculations, a new-type spatially indirect exciton can be optically generated in two-dimensional (2D) Bi2S2Te because of its unique structure feature. In particular, the spin-singlet spatially indirect excitons in Bi2S2Te monolayer are dipole/parity allowed and reveal befitting characteristics for excitonic condensation, such as small effective mass and satisfied dilute limitation. Based on the layered Bi2S2Te, the possibility of the high-temperature excitonic Bose-Einstein condensation (BEC) and superfluid state in two dimensions, which goes beyond the current paradigms in both experiment and theory, are proved. It should be highlighted that record-high phase transition temperatures of 289.7 and 72.4 K can be theoretically predicted for the excitonic BEC and superfluidity in the atomic thin Bi2S2Te, respectively. It therefore can be confirmed that Bi2S2Te featuring bound bosonic states is a fascinating 2D platform for exploring the high-temperature excitonic condensation and applications in such as quantum computing and dissipationless nanodevices.
Collapse
Affiliation(s)
- Yushuo Xu
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Yuanyuan Wang
- Science, Mathematics and Technology ClusterSingapore University of Technology and DesignSingapore487372Singapore
| | - Shiqiang Yu
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Dongyue Sun
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Ying Dai
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Baibiao Huang
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | - Wei Wei
- School of PhysicsState Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| |
Collapse
|
5
|
Dar DB, Baranova A, Maitra NT. Reformulation of Time-Dependent Density Functional Theory for Nonperturbative Dynamics: The Rabi Oscillation Problem Resolved. PHYSICAL REVIEW LETTERS 2024; 133:096401. [PMID: 39270163 DOI: 10.1103/physrevlett.133.096401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/18/2024] [Indexed: 09/15/2024]
Abstract
Rabi oscillations have long been thought to be out of reach in simulations using time-dependent density functional theory (TDDFT), a prominent symptom of the failure of the adiabatic approximation for nonperturbative dynamics. We present a reformulation of TDDFT which requires response quantities only, thus enabling an adiabatic approximation to predict such dynamics accurately because the functional is evaluated on a density close to the ground state, instead of on the fully nonperturbative density. Our reformulation applies to any real-time dynamics, redeeming TDDFT far from equilibrium. Examples of a resonantly-driven local excitation in a model He atom, and charge-transfer in the LiCN molecule are given.
Collapse
|
6
|
Molinero EB, Amorim B, Malakhov M, Cistaro G, Jiménez-Galán Á, Picón A, San-José P, Ivanov M, Silva REF. Subcycle dynamics of excitons under strong laser fields. SCIENCE ADVANCES 2024; 10:eadn6985. [PMID: 39213357 PMCID: PMC11364094 DOI: 10.1126/sciadv.adn6985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Excitons play a key role in the linear optical response of two-dimensional (2D) materials. However, their role in the nonlinear response to intense, nonresonant, low-frequency light is often overlooked as strong fields are expected to tear the electron-hole pair apart. Using high-harmonic generation as a spectroscopic tool, we theoretically study their formation and role in the nonlinear optical response. We show that the excitonic contribution is prominent and that excitons remain stable even when the driving laser field surpasses the strength of the Coulomb field binding the electron-hole pair. We demonstrate a parallel between the behavior of strongly laser-driven excitons in 2D solids and strongly driven Rydberg states in atoms, including the mechanisms of their formation and stability. Last, we show how the excitonic contribution can be singled out by encapsulating the 2D material in a dielectric, tuning the excitonic energy and its contribution to the high-harmonic spectrum.
Collapse
Affiliation(s)
- Eduardo B. Molinero
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Bruno Amorim
- Centro de Física das Universidades do Minho e do Porto (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies (LaPMET), Universidade do Minho, 4710-057 Braga, Portugal
| | - Mikhail Malakhov
- Departamento de Química, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Giovanni Cistaro
- Departamento de Química, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Álvaro Jiménez-Galán
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Antonio Picón
- Departamento de Química, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Pablo San-José
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
| | - Misha Ivanov
- Max Born Institute, Max-Born-Straße 2A, 12489 Berlin, Germany
- Department of Physics, Humboldt University, Newtonstraße 15, 12489 Berlin, Germany
- Blackett Laboratory, Imperial College London, London SW7 2AZ, UK
- Technion–Israel Institute of Technology, 3200003 Haifa, Israel
| | - Rui E. F. Silva
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain
- Max Born Institute, Max-Born-Straße 2A, 12489 Berlin, Germany
| |
Collapse
|
7
|
Shepard C, Zhou R, Bost J, Carney TE, Yao Y, Kanai Y. Efficient exact exchange using Wannier functions and other related developments in planewave-pseudopotential implementation of RT-TDDFT. J Chem Phys 2024; 161:024111. [PMID: 38984957 DOI: 10.1063/5.0211238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024] Open
Abstract
The plane-wave pseudopotential (PW-PP) formalism is widely used for the first-principles electronic structure calculation of extended periodic systems. The PW-PP approach has also been adapted for real-time time-dependent density functional theory (RT-TDDFT) to investigate time-dependent electronic dynamical phenomena. In this work, we detail recent advances in the PW-PP formalism for RT-TDDFT, particularly how maximally localized Wannier functions (MLWFs) are used to accelerate simulations using the exact exchange. We also discuss several related developments, including an anti-Hermitian correction for the time-dependent MLWFs (TD-MLWFs) when a time-dependent electric field is applied, the refinement procedure for TD-MLWFs, comparison of the velocity and length gauge approaches for applying an electric field, and elimination of long-range electrostatic interaction, as well as usage of a complex absorbing potential for modeling isolated systems when using the PW-PP formalism.
Collapse
Affiliation(s)
- Christopher Shepard
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Ruiyi Zhou
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - John Bost
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Thomas E Carney
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Yi Yao
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | - Yosuke Kanai
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
8
|
Xu J, Carney TE, Zhou R, Shepard C, Kanai Y. Real-Time Time-Dependent Density Functional Theory for Simulating Nonequilibrium Electron Dynamics. J Am Chem Soc 2024; 146:5011-5029. [PMID: 38362887 DOI: 10.1021/jacs.3c08226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The explicit real-time propagation approach for time-dependent density functional theory (RT-TDDFT) has increasingly become a popular first-principles computational method for modeling various time-dependent electronic properties of complex chemical systems. In this Perspective, we provide a nontechnical discussion of how this first-principles simulation approach has been used to gain novel physical insights into nonequilibrium electron dynamics phenomena in recent years. Following a concise overview of the RT-TDDFT methodology from a practical standpoint, we discuss our recent studies on the electronic stopping of DNA in water and the Floquet topological phase as examples. Our discussion focuses on how RT-TDDFT simulations played a unique role in deriving new scientific understandings. We then discuss existing challenges and some new advances at the frontier of RT-TDDFT method development for studying increasingly complex dynamic phenomena and systems.
Collapse
Affiliation(s)
- Jianhang Xu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Thomas E Carney
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ruiyi Zhou
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Christopher Shepard
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yosuke Kanai
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
9
|
Barhoumi M, Liu J, Lefkidis G, Hübner W. Laser-induced ultrafast spin-transfer processes in non-linear zigzag carbon chain systems. Phys Chem Chem Phys 2023; 25:24563-24580. [PMID: 37661835 DOI: 10.1039/d3cp02483k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
We combine the high-level quantum chemistry theory CCSD and EOM-CCSD together with local and global Λ processes to investigate the details of the laser-induced ultrafast spin manipulation scenarios in non-linear zigzag carbon chain systems Ni2@C32H32 and Ni2@C36H36. The spin density distribution, which is calculated on each many-body state using a Mulliken population analysis, fulfills the requirements to accomplish the spin dynamics processes. Various spin-flip and spin-transfer scenarios are accomplished. All the spin-dynamics processes can be achieved within subpicosecond times. Under the influence of a magnetic field, we find that the spin-transfer scenarios are preserved, while the local spin-flip scenario on a Ni atom can be significantly inhibited depending on the strength of the magnetic field. The impact of the propagation direction of the laser pulse on the spin dynamics processes by varying their polar and azimuthal angles in spherical coordinates is investigated. Additionally, we find that double laser pulses successfully induce the spin-transfer processes. Our outcomes underline the significant potential of carbon chain systems as building blocks for developing future all-optical integrated logic processing units.
Collapse
Affiliation(s)
- Mohamed Barhoumi
- Department of Physics, Rheinland-Pfälzische Technische Universität Kaiserslautern (RPTU) Kaiserslautern-Landau, P.O. Box 3049, 67653 Kaiserslautern, Germany.
| | - Jing Liu
- Institute of Theoretical Chemistry, Ulm University, 89081 Ulm, Germany
| | - Georgios Lefkidis
- Department of Physics, Rheinland-Pfälzische Technische Universität Kaiserslautern (RPTU) Kaiserslautern-Landau, P.O. Box 3049, 67653 Kaiserslautern, Germany.
| | - Wolfgang Hübner
- Department of Physics, Rheinland-Pfälzische Technische Universität Kaiserslautern (RPTU) Kaiserslautern-Landau, P.O. Box 3049, 67653 Kaiserslautern, Germany.
| |
Collapse
|
10
|
Wang C, Liu X, Chen Q, Chen D, Wang Y, Meng S. Coherent-Phonon-Driven Intervalley Scattering and Rabi Oscillation in Multivalley 2D Materials. PHYSICAL REVIEW LETTERS 2023; 131:066401. [PMID: 37625067 DOI: 10.1103/physrevlett.131.066401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/15/2023] [Accepted: 06/29/2023] [Indexed: 08/27/2023]
Abstract
Resolving the complete electron scattering dynamics mediated by coherent phonons is crucial for understanding electron-phonon couplings beyond equilibrium. Here we present a time-resolved theoretical investigation on strongly coupled ultrafast electron and phonon dynamics in monolayer WSe_{2}, with a focus on the intervalley scattering from the optically "bright" K state to "dark" Q state. We find that the strong coherent lattice vibration along the longitudinal acoustic phonon mode [LA(M)] can drastically promote K-to-Q transition on a timescale of ∼400 fs, comparable with previous experimental observation on thermal-phonon-mediated electron dynamics. Further, this coherent-phonon-driven intervalley scattering occurs in an unconventional steplike manner and further induces an electronic Rabi oscillation. By constructing a two-level model and quantitatively comparing with ab initio dynamic simulations, we uncover the critical role of nonadiabatic coupling effects. Finally, a new strategy is proposed to effectively tune the intervalley scattering rates by varying the coherent phonon amplitude, which could be realized via light-induced nonlinear phononics that we hope will spark experimental investigation.
Collapse
Affiliation(s)
- Chenyu Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xinbao Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Qing Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Daqiang Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yaxian Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
11
|
Bhat V, Callaway CP, Risko C. Computational Approaches for Organic Semiconductors: From Chemical and Physical Understanding to Predicting New Materials. Chem Rev 2023. [PMID: 37141497 DOI: 10.1021/acs.chemrev.2c00704] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
While a complete understanding of organic semiconductor (OSC) design principles remains elusive, computational methods─ranging from techniques based in classical and quantum mechanics to more recent data-enabled models─can complement experimental observations and provide deep physicochemical insights into OSC structure-processing-property relationships, offering new capabilities for in silico OSC discovery and design. In this Review, we trace the evolution of these computational methods and their application to OSCs, beginning with early quantum-chemical methods to investigate resonance in benzene and building to recent machine-learning (ML) techniques and their application to ever more sophisticated OSC scientific and engineering challenges. Along the way, we highlight the limitations of the methods and how sophisticated physical and mathematical frameworks have been created to overcome those limitations. We illustrate applications of these methods to a range of specific challenges in OSCs derived from π-conjugated polymers and molecules, including predicting charge-carrier transport, modeling chain conformations and bulk morphology, estimating thermomechanical properties, and describing phonons and thermal transport, to name a few. Through these examples, we demonstrate how advances in computational methods accelerate the deployment of OSCsin wide-ranging technologies, such as organic photovoltaics (OPVs), organic light-emitting diodes (OLEDs), organic thermoelectrics, organic batteries, and organic (bio)sensors. We conclude by providing an outlook for the future development of computational techniques to discover and assess the properties of high-performing OSCs with greater accuracy.
Collapse
Affiliation(s)
- Vinayak Bhat
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Connor P Callaway
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Chad Risko
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| |
Collapse
|
12
|
Hanasaki K, Ali ZA, Choi M, Del Ben M, Wong BM. Implementation of real-time TDDFT for periodic systems in the open-source PySCF software package. J Comput Chem 2023; 44:980-987. [PMID: 36564979 DOI: 10.1002/jcc.27058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/25/2022]
Abstract
We present a new implementation of real-time time-dependent density functional theory (RT-TDDFT) for calculating excited-state dynamics of periodic systems in the open-source Python-based PySCF software package. Our implementation uses Gaussian basis functions in a velocity gauge formalism and can be applied to periodic surfaces, condensed-phase, and molecular systems. As representative benchmark applications, we present optical absorption calculations of various molecular and bulk systems and a real-time simulation of field-induced dynamics of a (ZnO)4 molecular cluster on a periodic graphene sheet. We present representative calculations on optical response of solids to infinitesimal external fields as well as real-time charge-transfer dynamics induced by strong pulsed laser fields. Due to the widespread use of the Python language, our RT-TDDFT implementation can be easily modified and provides a new capability in the PySCF code for real-time excited-state calculations of chemical and material systems.
Collapse
Affiliation(s)
- Kota Hanasaki
- Department of Chemical & Environmental Engineering, Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California-Riverside, Riverside, California, USA
| | - Zulfikhar A Ali
- Department of Chemical & Environmental Engineering, Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California-Riverside, Riverside, California, USA
| | - Min Choi
- Department of Chemical & Environmental Engineering, Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California-Riverside, Riverside, California, USA
| | - Mauro Del Ben
- Applied Mathematics & Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Bryan M Wong
- Department of Chemical & Environmental Engineering, Materials Science & Engineering Program, Department of Chemistry, and Department of Physics & Astronomy, University of California-Riverside, Riverside, California, USA
| |
Collapse
|
13
|
Cistaro G, Malakhov M, Esteve-Paredes JJ, Uría-Álvarez AJ, Silva REF, Martín F, Palacios JJ, Picón A. Theoretical Approach for Electron Dynamics and Ultrafast Spectroscopy (EDUS). J Chem Theory Comput 2022; 19:333-348. [PMID: 36480770 PMCID: PMC9835834 DOI: 10.1021/acs.jctc.2c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this manuscript, we present a theoretical framework and its numerical implementation to simulate the out-of-equilibrium electron dynamics induced by the interaction of ultrashort laser pulses in condensed-matter systems. Our approach is based on evolving in real time the density matrix of the system in reciprocal space. It considers excitonic and nonperturbative light-matter interactions. We show some relevant examples that illustrate the efficiency and flexibility of the approach to describe realistic ultrafast spectroscopy experiments. Our approach is suitable for modeling the promising and emerging ultrafast studies at the attosecond time scale that aim at capturing the electron dynamics and the dynamical electron-electron correlations via X-ray absorption spectroscopy.
Collapse
Affiliation(s)
- Giovanni Cistaro
- Departamento
de Química, Universidad Autónoma
de Madrid, 28049Madrid, Spain
| | - Mikhail Malakhov
- Departamento
de Química, Universidad Autónoma
de Madrid, 28049Madrid, Spain
| | - Juan José Esteve-Paredes
- Departamento
de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049Madrid, Spain
| | | | - Rui E. F. Silva
- Instituto
de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Sor Juana Inés de la Cruz
3, 28049Madrid, Spain
| | - Fernando Martín
- Departamento
de Química, Universidad Autónoma
de Madrid, 28049Madrid, Spain,Instituto
Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco, 28049Madrid, Spain,Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, 28049Madrid, Spain
| | - Juan José Palacios
- Departamento
de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049Madrid, Spain,Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, 28049Madrid, Spain,Instituto
Nicolás Cabrera, Universidad Autónoma
de Madrid, 28049Madrid, Spain
| | - Antonio Picón
- Departamento
de Química, Universidad Autónoma
de Madrid, 28049Madrid, Spain,
| |
Collapse
|
14
|
Trepl T, Schelter I, Kümmel S. Analyzing Excitation-Energy Transfer Based on the Time-Dependent Density Functional Theory in Real Time. J Chem Theory Comput 2022; 18:6577-6587. [PMID: 36268773 DOI: 10.1021/acs.jctc.2c00600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Excitation-energy transfer is a key step in processes such as photosynthesis that convert light into other forms of energy. Time-dependent density functional theory (DFT) in real time is ideal for the first-principles simulation of such processes due to its computational efficiency. We here demonstrate how real-time DFT can be used for analyzing excitation-energy transfer from first-principles. We discuss several measures of energy transfer that are based solely on the time-dependent density, are well founded in the DFT framework, allow for intuitive understanding and visualization, and reproduce important limiting cases of an analytical model. We demonstrate their usefulness in calculations for model systems, both with static nuclei and in the context of DFT-based Ehrenfest dynamics.
Collapse
Affiliation(s)
- T Trepl
- Theoretical Physics IV, University of Bayreuth, Bayreuth95440, Germany
| | - I Schelter
- Theoretical Physics IV, University of Bayreuth, Bayreuth95440, Germany
| | - S Kümmel
- Theoretical Physics IV, University of Bayreuth, Bayreuth95440, Germany
| |
Collapse
|
15
|
Andrade X, Pemmaraju CD, Kartsev A, Xiao J, Lindenberg A, Rajpurohit S, Tan LZ, Ogitsu T, Correa AA. Inq, a Modern GPU-Accelerated Computational Framework for (Time-Dependent) Density Functional Theory. J Chem Theory Comput 2021; 17:7447-7467. [PMID: 34726888 DOI: 10.1021/acs.jctc.1c00562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present inq, a new implementation of density functional theory (DFT) and time-dependent DFT (TDDFT) written from scratch to work on graphic processing units (GPUs). Besides GPU support, inq makes use of modern code design features and takes advantage of newly available hardware. By designing the code around algorithms, rather than against specific implementations and numerical libraries, we aim to provide a concise and modular code. The result is a fairly complete DFT/TDDFT implementation in roughly 12 000 lines of open-source C++ code representing a modular platform for community-driven application development on emerging high-performance computing architectures.
Collapse
Affiliation(s)
- Xavier Andrade
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94551, United States
| | - Chaitanya Das Pemmaraju
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Alexey Kartsev
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jun Xiao
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Aaron Lindenberg
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Sangeeta Rajpurohit
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Liang Z Tan
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Tadashi Ogitsu
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94551, United States
| | - Alfredo A Correa
- Quantum Simulations Group, Lawrence Livermore National Laboratory, Livermore, California 94551, United States
| |
Collapse
|