Das S, Chandel GR. Streaming electric field, electroviscous effect, and electrokinetic liquid flows in the induced pressure-driven transport of active liquids in narrow capillaries.
Electrophoresis 2024. [PMID:
39287065 DOI:
10.1002/elps.202400133]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
In this paper, we develop a theory for studying the electrokinetic effects in a charged nanocapillary filled with active liquid. The active particles present within the active liquid are self-driven, demonstrate vortex defects, and enforce a circumferentially arranged polarization field. Under such circumstances, there is the development of an induced pressure-gradient-driven transport dictated (similar to diffusioosmotic transport) by the presence of an axial gradient in the activity (or the concentration of the active particles). This pressure-driven transport has a profile different from the standard Hagen-Poiseuille flow in a nanocapillary. Also, this induced pressure-driven flow drives electrokinetic effects, which are characterized by the generation of a streaming electric field, associated electroosmotic (EOS) transport opposing pressure-driven flow, and electroviscous effect. We quantify these effects as functions of dimensionless parameters that vary inversely as the strength of the activity-induced pressure-driven flow and salt concentrations. Overall, we anticipate that this paper will draw immense attention toward a new type of activity-induced pressure-driven flow and associated electrokinetic phenomena in charged nanoconfinements.
Collapse