1
|
Zheng W, Sun Y, Zhang X, Wang K, Liu F. Research on rumor and anti rumor propagation models based on quantum superposition states. Sci Rep 2025; 15:13220. [PMID: 40246947 PMCID: PMC12006511 DOI: 10.1038/s41598-025-96006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/25/2025] [Indexed: 04/19/2025] Open
Abstract
Building an effective rumor propagation model is the key to blocking rumor propagation. This article is based on the quantum superposition theory, analyzing the propagation decision of unknown individuals from the perspectives of consciousness and behavior, determining their time-varying propagation state, characterizing the propagation process of online rumors, and constructing a rumor propagation model to solve the basic reproduction number. It analyzes the local stability of equilibrium points without rumor propagation and equilibrium points with rumor propagation. The experimental results better fit the rule of change of rumor propagation group state, and verify the effects of the average rumor belief level in society and the degree of social management of rumors on the scale of rumor propagation, providing theoretical support for suppressing rumor propagation.
Collapse
Affiliation(s)
- Wenrong Zheng
- Business School, Shandong Normal University, Jinan, 250014, China
| | - Yingping Sun
- Business School, Shandong Normal University, Jinan, 250014, China
- School of Computer and Mathematical Sciences, The University of Adelaide, Adelaide, SA5005, Australia
| | - Xu Zhang
- School of Management Science and Engineering, Shandong University of Finance and Economics, Jinan, 250014, China
| | - Kuihu Wang
- Business School, Shandong Normal University, Jinan, 250014, China
- Asset Operation and Management Department, Qilu University of Technology, Jinan, 250353, China
| | - Fengming Liu
- Business School, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
2
|
Yin C. Fast and Accurate Greenberger-Horne-Zeilinger Encoding Using All-to-All Interactions. PHYSICAL REVIEW LETTERS 2025; 134:130604. [PMID: 40250351 DOI: 10.1103/physrevlett.134.130604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/03/2024] [Accepted: 03/25/2025] [Indexed: 04/20/2025]
Abstract
The N-qubit Greenberger-Horne-Zeilinger (GHZ) state is an important resource for quantum technologies. We consider the task of GHZ encoding using all-to-all interactions, which prepares the GHZ state in a special case, and is furthermore useful for quantum error correction, interaction-rate enhancement, and transmitting information using power-law interactions. The naive protocol based on parallelizing cnot gates takes O(1)-time of Hamiltonian evolution. In this work, we propose a fast protocol that achieves GHZ encoding with high accuracy. The evolution time O(log^{2}N/N) almost saturates the theoretical limit Ω(logN/N). Moreover, the final state is close to the ideal encoded one with high fidelity >1-10^{-3}, up to large system sizes N≲2000. The protocol only requires a few stages of time-independent Hamiltonian evolution; the key idea is to use the data qubit as control, and to use fast spin-squeezing dynamics generated by e.g., two-axis twisting.
Collapse
Affiliation(s)
- Chao Yin
- University of Colorado, Boulder, Department of Physics and Center for Theory of Quantum Matter, Colorado 80309, USA
| |
Collapse
|
3
|
Chu Y, Li X, Cai J. Quantum Delocalization on Correlation Landscape: The Key to Exponentially Fast Multipartite Entanglement Generation. PHYSICAL REVIEW LETTERS 2024; 133:110201. [PMID: 39332008 DOI: 10.1103/physrevlett.133.110201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/03/2024] [Accepted: 08/12/2024] [Indexed: 09/29/2024]
Abstract
Entanglement, a hallmark of quantum mechanics, is a vital resource for quantum technologies. Generating highly entangled multipartite states is a key goal in current quantum experiments. We unveil a novel framework for understanding entanglement generation dynamics in Hamiltonian systems by quantum delocalization of an effective operator wave function on a correlation landscape. Our framework establishes a profound connection between the exponentially fast generation of multipartite entanglement, witnessed by the quantum Fisher information, and the linearly increasing asymptotics of hopping amplitudes governing the delocalization dynamics in Krylov space. We illustrate this connection using the paradigmatic Lipkin-Meshkov-Glick model and highlight potential signatures in chaotic Feingold-Peres tops. Our results provide a transformative tool for understanding and harnessing rapid entanglement production in complex quantum systems, providing a pathway for quantum enhanced technologies by large-scale entanglement.
Collapse
|
4
|
Kuwahara T, Vu TV, Saito K. Effective light cone and digital quantum simulation of interacting bosons. Nat Commun 2024; 15:2520. [PMID: 38514614 PMCID: PMC10957968 DOI: 10.1038/s41467-024-46501-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
The speed limit of information propagation is one of the most fundamental features in non-equilibrium physics. The region of information propagation by finite-time dynamics is approximately restricted inside the effective light cone that is formulated by the Lieb-Robinson bound. To date, extensive studies have been conducted to identify the shape of effective light cones in most experimentally relevant many-body systems. However, the Lieb-Robinson bound in the interacting boson systems, one of the most ubiquitous quantum systems in nature, has remained a critical open problem for a long time. This study reveals a tight effective light cone to limit the information propagation in interacting bosons, where the shape of the effective light cone depends on the spatial dimension. To achieve it, we prove that the speed for bosons to clump together is finite, which in turn leads to the error guarantee of the boson number truncation at each site. Furthermore, we applied the method to provide a provably efficient algorithm for simulating the interacting boson systems. The results of this study settle the notoriously challenging problem and provide the foundation for elucidating the complexity of many-body boson systems.
Collapse
Affiliation(s)
- Tomotaka Kuwahara
- Analytical quantum complexity RIKEN Hakubi Research Team, RIKEN Center for Quantum Computing (RQC), Wako, Saitama, 351-0198, Japan.
- RIKEN Cluster for Pioneering Research (CPR), Wako, Saitama, 351-0198, Japan.
- PRESTO, Japan Science and Technology (JST), Kawaguchi, Saitama, 332-0012, Japan.
| | - Tan Van Vu
- Analytical quantum complexity RIKEN Hakubi Research Team, RIKEN Center for Quantum Computing (RQC), Wako, Saitama, 351-0198, Japan
| | - Keiji Saito
- Department of Physics, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
5
|
Ferté B, Cao X. Solvable Model of Quantum-Darwinism-Encoding Transitions. PHYSICAL REVIEW LETTERS 2024; 132:110201. [PMID: 38563920 DOI: 10.1103/physrevlett.132.110201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/08/2024] [Indexed: 04/04/2024]
Abstract
We propose a solvable model of quantum Darwinism to encoding transitions-abrupt changes in how quantum information spreads in a many-body system under unitary dynamics. We consider a random Clifford circuit on an expanding tree, whose input qubit is entangled with a reference. The model has a quantum Darwinism phase, where one classical bit of information about the reference can be retrieved from an arbitrarily small fraction of the output qubits, and an encoding phase where such retrieval is impossible. The two phases are separated by a mixed phase and two continuous transitions. We compare the exact result to a two-replica calculation. The latter yields a similar "annealed" phase diagram, which applies also to a model with Haar random unitaries. We relate our approach to measurement-induced phase transitions (MIPTs), by solving a modified model where an environment eavesdrops on an encoding system. It has a sharp MIPT only with full access to the environment.
Collapse
Affiliation(s)
- Benoît Ferté
- Université Paris-Saclay, CNRS, LPTMS, 91405 Orsay, France
| | - Xiangyu Cao
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France
| |
Collapse
|
6
|
Yin C, Lucas A. Prethermalization and the Local Robustness of Gapped Systems. PHYSICAL REVIEW LETTERS 2023; 131:050402. [PMID: 37595215 DOI: 10.1103/physrevlett.131.050402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 07/17/2023] [Indexed: 08/20/2023]
Abstract
We prove that prethermalization is a generic property of gapped local many-body quantum systems, subjected to small perturbations, in any spatial dimension. More precisely, let H_{0} be a Hamiltonian, spatially local in d spatial dimensions, with a gap Δ in the many-body spectrum; let V be a spatially local Hamiltonian consisting of a sum of local terms, each of which is bounded by ε≪Δ. Then, the approximation that quantum dynamics is restricted to the low-energy subspace of H_{0} is accurate, in the correlation functions of local operators, for stretched exponential timescale τ∼exp[(Δ/ε)^{a}] for any a<1/(2d-1). This result does not depend on whether the perturbation closes the gap. It significantly extends previous rigorous results on prethermalization in models where H_{0} was frustration-free. We infer the robustness of quantum simulation in low-energy subspaces, the existence of athermal "scarred" correlation functions in gapped systems subject to generic perturbations, the long lifetime of false vacua in symmetry broken systems, and the robustness of quantum information in non-frustration-free gapped phases with topological order.
Collapse
Affiliation(s)
- Chao Yin
- Department of Physics and Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| | - Andrew Lucas
- Department of Physics and Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
7
|
Giachetti G, Defenu N. Entanglement propagation and dynamics in non-additive quantum systems. Sci Rep 2023; 13:12388. [PMID: 37524738 PMCID: PMC10390585 DOI: 10.1038/s41598-023-37984-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/30/2023] [Indexed: 08/02/2023] Open
Abstract
The prominent collective character of long-range interacting quantum systems makes them promising candidates for quantum technological applications. Yet, lack of additivity overthrows the traditional picture for entanglement scaling and transport, due to the breakdown of the common mechanism based on excitations propagation and confinement. Here, we describe the dynamics of the entanglement entropy in many-body quantum systems with a diverging contribution to the internal energy from the long-range two body potential. While in the strict thermodynamic limit entanglement dynamics is shown to be suppressed, a rich mosaic of novel scaling regimes is observed at intermediate system sizes, due to the possibility to trigger multiple resonant modes in the global dynamics. Quantitative predictions on the shape and timescales of entanglement propagation are made, paving the way to the observation of these phases in current quantum simulators. This picture is connected and contrasted with the case of local many body systems subject to Floquet driving.
Collapse
Affiliation(s)
- Guido Giachetti
- SISSA and INFN Sezione di Trieste, Via Bonomea 265, 34136, Trieste, Italy
| | - Nicolò Defenu
- Institut für Theoretische Physik, ETH Zürich, Wolfgang-Pauli-Str. 27, Zurich, Switzerland.
| |
Collapse
|
8
|
Chu Y, Li X, Cai J. Strong Quantum Metrological Limit from Many-Body Physics. PHYSICAL REVIEW LETTERS 2023; 130:170801. [PMID: 37172232 DOI: 10.1103/physrevlett.130.170801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/05/2023] [Accepted: 04/03/2023] [Indexed: 05/14/2023]
Abstract
Surpassing the standard quantum limit and even reaching the Heisenberg limit using quantum entanglement, represents the Holy Grail of quantum metrology. However, quantum entanglement is a valuable resource that does not come without a price. The exceptional time overhead for the preparation of large-scale entangled states raises disconcerting concerns about whether the Heisenberg limit is fundamentally achievable. Here, we find a universal speed limit set by the Lieb-Robinson light cone for the quantum Fisher information growth to characterize the metrological potential of quantum resource states during their preparation. Our main result establishes a strong precision limit of quantum metrology accounting for the complexity of many-body quantum resource state preparation and reveals a fundamental constraint for reaching the Heisenberg limit in a generic many-body lattice system with bounded one-site energy. It enables us to identify the essential features of quantum many-body systems that are crucial for achieving the quantum advantage of quantum metrology, and brings an interesting connection between many-body quantum dynamics and quantum metrology.
Collapse
Affiliation(s)
- Yaoming Chu
- School of Physics, International Joint Laboratory on Quantum Sensing and Quantum Metrology, Hubei Key Laboratory of Gravitation and Quantum Physics, Institute for Quantum Science and Engineering, Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangbei Li
- School of Physics, International Joint Laboratory on Quantum Sensing and Quantum Metrology, Hubei Key Laboratory of Gravitation and Quantum Physics, Institute for Quantum Science and Engineering, Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianming Cai
- School of Physics, International Joint Laboratory on Quantum Sensing and Quantum Metrology, Hubei Key Laboratory of Gravitation and Quantum Physics, Institute for Quantum Science and Engineering, Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| |
Collapse
|
9
|
Gong Z, Guaita T, Cirac JI. Long-Range Free Fermions: Lieb-Robinson Bound, Clustering Properties, and Topological Phases. PHYSICAL REVIEW LETTERS 2023; 130:070401. [PMID: 36867805 DOI: 10.1103/physrevlett.130.070401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
We consider free fermions living on lattices in arbitrary dimensions, where hopping amplitudes follow a power-law decay with respect to the distance. We focus on the regime where this power is larger than the spatial dimension (i.e., where the single particle energies are guaranteed to be bounded) for which we provide a comprehensive series of fundamental constraints on their equilibrium and nonequilibrium properties. First, we derive a Lieb-Robinson bound which is optimal in the spatial tail. This bound then implies a clustering property with essentially the same power law for the Green's function, whenever its variable lies outside the energy spectrum. The widely believed (but yet unproven in this regime) clustering property for the ground-state correlation function follows as a corollary among other implications. Finally, we discuss the impact of these results on topological phases in long-range free-fermion systems: they justify the equivalence between Hamiltonian and state-based definitions and the extension of the short-range phase classification to systems with decay power larger than the spatial dimension. Additionally, we argue that all the short-range topological phases are unified whenever this power is allowed to be smaller.
Collapse
Affiliation(s)
- Zongping Gong
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, D-85748 Garching, Germany
- Munich Center for Quantum Science and Technology, Schellingstraße 4, 80799 München, Germany
| | - Tommaso Guaita
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, D-85748 Garching, Germany
- Munich Center for Quantum Science and Technology, Schellingstraße 4, 80799 München, Germany
- Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany
| | - J Ignacio Cirac
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, D-85748 Garching, Germany
- Munich Center for Quantum Science and Technology, Schellingstraße 4, 80799 München, Germany
| |
Collapse
|
10
|
Van Vu T, Saito K. Topological Speed Limit. PHYSICAL REVIEW LETTERS 2023; 130:010402. [PMID: 36669213 DOI: 10.1103/physrevlett.130.010402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/15/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Any physical system evolves at a finite speed that is constrained not only by the energetic cost but also by the topological structure of the underlying dynamics. In this Letter, by considering such structural information, we derive a unified topological speed limit for the evolution of physical states using an optimal transport approach. We prove that the minimum time required for changing states is lower bounded by the discrete Wasserstein distance, which encodes the topological information of the system, and the time-averaged velocity. The bound obtained is tight and applicable to a wide range of dynamics, from deterministic to stochastic, and classical to quantum systems. In addition, the bound provides insight into the design principles of the optimal process that attains the maximum speed. We demonstrate the application of our results to chemical reaction networks and interacting many-body quantum systems.
Collapse
Affiliation(s)
- Tan Van Vu
- Department of Physics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Keiji Saito
- Department of Physics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
11
|
Xing F, Lu Y, Liao Z. Quantum correlation propagation in a waveguide-QED system with long-range interaction. OPTICS EXPRESS 2022; 30:22963-22973. [PMID: 36224986 DOI: 10.1364/oe.462680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/30/2022] [Indexed: 06/16/2023]
Abstract
We investigate the excitation and correlation propagations among a one-dimensional atom chain with exponentially decaying, ideal long-range, and power-law decaying interactions. We show that although a clear light-cone-like structure can appear in both the excitation and correlation propagation patterns under the exponentially decaying interaction, only an obscure light-cone-like structure appears with multi-power-law decaying interaction and surprisingly an inverse light-cone-like structure appears in the ideal long-range interaction case. The extracted excitation and correlation propagation velocities in the ideal long-range interaction case are about one order of magnitude larger than those in the multi-power-law interaction case and about two orders of magnitude larger than those in the short-range interaction case. These results indicate that the waveguide-quantum electrodynamics system with long-range interaction can boost the quantum information transfer speed and is beneficial for building fast quantum network and scalable quantum computer.
Collapse
|
12
|
Faupin J, Lemm M, Sigal IM. Maximal Speed for Macroscopic Particle Transport in the Bose-Hubbard Model. PHYSICAL REVIEW LETTERS 2022; 128:150602. [PMID: 35499893 DOI: 10.1103/physrevlett.128.150602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The Lieb-Robinson bound asserts the existence of a maximal propagation speed for the quantum dynamics of lattice spin systems. Such general bounds are not available for most bosonic lattice gases due to their unbounded local interactions. Here we establish for the first time a general ballistic upper bound on macroscopic particle transport in the paradigmatic Bose-Hubbard model. The bound is the first to cover a broad class of initial states with positive density including Mott states, which resolves a longstanding open problem. It applies to Bose-Hubbard-type models on any lattice with not too long-ranged hopping. The proof is rigorous and rests on controlling the time evolution of a new kind of adiabatic spacetime localization observable via iterative differential inequalities.
Collapse
Affiliation(s)
- Jérémy Faupin
- Institut Elie Cartan de Lorraine, Université de Lorraine, 57045 Metz Cedex 1, France
| | - Marius Lemm
- Department of Mathematics, University of Tübingen, 72076 Tübingen, Germany
| | - Israel Michael Sigal
- Department of Mathematics, University of Toronto, Toronto, M5S 2E4 Ontario, Canada
| |
Collapse
|
13
|
Tunable Geometries in Sparse Clifford Circuits. Symmetry (Basel) 2022. [DOI: 10.3390/sym14040666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We investigate the emergence of different effective geometries in stochastic Clifford circuits with sparse coupling. By changing the probability distribution for choosing two-site gates as a function of distance, we generate sparse interactions that either decay or grow with distance as a function of a single tunable parameter. Tuning this parameter reveals three distinct regimes of geometry for the spreading of correlations and growth of entanglement in the system. We observe linear geometry for short-range interactions, treelike geometry on a sparse coupling graph for long-range interactions, and an intermediate fast scrambling regime at the crossover point between the linear and treelike geometries. This transition in geometry is revealed in calculations of the subsystem entanglement entropy and tripartite mutual information. We also study emergent lightcones that govern these effective geometries by teleporting a single qubit of information from an input qubit to an output qubit. These tools help to analyze distinct geometries arising in dynamics and correlation spreading in quantum many-body systems.
Collapse
|
14
|
Saha D, Iyengar SS, Richerme P, Smith JM, Sabry A. Mapping Quantum Chemical Dynamics Problems to Spin-Lattice Simulators. J Chem Theory Comput 2021; 17:6713-6732. [PMID: 34694820 DOI: 10.1021/acs.jctc.1c00688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The accurate computational determination of chemical, materials, biological, and atmospheric properties has a critical impact on a wide range of health and environmental problems, but is deeply limited by the computational scaling of quantum mechanical methods. The complexity of quantum chemical studies arises from the steep algebraic scaling of electron correlation methods and the exponential scaling in studying nuclear dynamics and molecular flexibility. To date, efforts to apply quantum hardware to such quantum chemistry problems have focused primarily on electron correlation. Here, we provide a framework that allows for the solution of quantum chemical nuclear dynamics by mapping these to quantum spin-lattice simulators. Using the example case of a short-strong hydrogen-bonded system, we construct the Hamiltonian for the nuclear degrees of freedom on a single Born-Oppenheimer surface and show how it can be transformed to a generalized Ising model Hamiltonian. We then demonstrate a method to determine the local fields and spin-spin couplings needed to identically match the molecular and spin-lattice Hamiltonians. We describe a protocol to determine the on-site and intersite coupling parameters of this Ising Hamiltonian from the Born-Oppenheimer potential and nuclear kinetic energy operator. Our approach represents a paradigm shift in the methods used to study quantum nuclear dynamics, opening the possibility to solve both electronic structure and nuclear dynamics problems using quantum computing systems.
Collapse
Affiliation(s)
- Debadrita Saha
- Department of Chemistry, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, Bloomington, Indiana 47405, United States
| | - Srinivasan S Iyengar
- Department of Chemistry, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, Bloomington, Indiana 47405, United States
| | - Philip Richerme
- Department of Physics and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, Bloomington, Indiana 47405, United States
| | - Jeremy M Smith
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Amr Sabry
- Department of Computer Science, School of Informatics, Computing, and Engineering, and the Indiana University Quantum Science and Engineering Center (IU-QSEC), Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|