1
|
Kirsten-Siemß JN, Fitzek F, Schubert C, Rasel EM, Gaaloul N, Hammerer K. Large-Momentum-Transfer Atom Interferometers with μrad-Accuracy Using Bragg Diffraction. PHYSICAL REVIEW LETTERS 2023; 131:033602. [PMID: 37540849 DOI: 10.1103/physrevlett.131.033602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 02/20/2023] [Accepted: 05/25/2023] [Indexed: 08/06/2023]
Abstract
Large-momentum-transfer (LMT) atom interferometers using elastic Bragg scattering on light waves are among the most precise quantum sensors to date. To advance their accuracy from the mrad to the μrad regime, it is necessary to understand the rich phenomenology of the Bragg interferometer, which differs significantly from that of a standard two-mode interferometer. We develop an analytic model for the interferometer signal and demonstrate its accuracy using comprehensive numerical simulations. Our analytic treatment allows the determination of the atomic projection noise limit of a LMT Bragg interferometer and provides the means to saturate this limit. It affords accurate knowledge of the systematic phase errors as well as their suppression by 2 orders of magnitude down to a few μrad using appropriate light-pulse parameters.
Collapse
Affiliation(s)
- J-N Kirsten-Siemß
- Leibniz Universität Hannover, Institut für Theoretische Physik, Appelstraße 2, D-30167 Hannover, Germany
- Leibniz Universität Hannover, Institut für Quantenoptik, Welfengarten 1, D-30167 Hannover, Germany
| | - F Fitzek
- Leibniz Universität Hannover, Institut für Theoretische Physik, Appelstraße 2, D-30167 Hannover, Germany
- Leibniz Universität Hannover, Institut für Quantenoptik, Welfengarten 1, D-30167 Hannover, Germany
| | - C Schubert
- Leibniz Universität Hannover, Institut für Quantenoptik, Welfengarten 1, D-30167 Hannover, Germany
- Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Institut für Satellitengeodäsie und Inertialsensorik, Callinstraße 30b, D-30167 Hannover, Germany
| | - E M Rasel
- Leibniz Universität Hannover, Institut für Quantenoptik, Welfengarten 1, D-30167 Hannover, Germany
| | - N Gaaloul
- Leibniz Universität Hannover, Institut für Quantenoptik, Welfengarten 1, D-30167 Hannover, Germany
| | - K Hammerer
- Leibniz Universität Hannover, Institut für Theoretische Physik, Appelstraße 2, D-30167 Hannover, Germany
| |
Collapse
|
2
|
A space-based quantum gas laboratory at picokelvin energy scales. Nat Commun 2022; 13:7889. [PMID: 36550117 PMCID: PMC9780313 DOI: 10.1038/s41467-022-35274-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
Ultracold quantum gases are ideal sources for high-precision space-borne sensing as proposed for Earth observation, relativistic geodesy and tests of fundamental physical laws as well as for studying new phenomena in many-body physics during extended free fall. Here we report on experiments with the Cold Atom Lab aboard the International Space Station, where we have achieved exquisite control over the quantum state of single 87Rb Bose-Einstein condensates paving the way for future high-precision measurements. In particular, we have applied fast transport protocols to shuttle the atomic cloud over a millimeter distance with sub-micrometer accuracy and subsequently drastically reduced the total expansion energy to below 100 pK with matter-wave lensing techniques.
Collapse
|