1
|
Zhai X, Ma X, Gao Y, Xing C, Gao M, Dai H, Wang X, Pan A, Schumacher S, Gao T. Electrically Controlling Vortices in a Neutral Exciton-Polariton Condensate at Room Temperature. PHYSICAL REVIEW LETTERS 2023; 131:136901. [PMID: 37831991 DOI: 10.1103/physrevlett.131.136901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/26/2023] [Accepted: 08/31/2023] [Indexed: 10/15/2023]
Abstract
Manipulating bosonic condensates with electric fields is very challenging as the electric fields do not directly interact with the neutral particles of the condensate. Here we demonstrate a simple electric method to tune the vorticity of exciton-polariton condensates in a strong coupling liquid crystal (LC) microcavity with CsPbBr_{3} microplates as active material at room temperature. In such a microcavity, the LC molecular director can be electrically modulated giving control over the polariton condensation in different modes. For isotropic nonresonant optical pumping we demonstrate the spontaneous formation of vortices with topological charges of +1, +2, -2, and -1. The topological vortex charge is controlled by a voltage in the range of 1 to 10 V applied to the microcavity sample. This control is achieved by the interplay of a built-in potential gradient, the anisotropy of the optically active perovskite microplates, and the electrically controllable LC molecular director in our system with intentionally broken rotational symmetry. Besides the fundamental interest in the achieved electric polariton vortex control at room temperature, our work paves the way to micron-sized emitters with electric control over the emitted light's phase profile and quantized orbital angular momentum for information processing and integration into photonic circuits.
Collapse
Affiliation(s)
- Xiaokun Zhai
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Xuekai Ma
- Department of Physics and Center for Optoelectronics and Photonics Paderborn (CeOPP), Universität Paderborn, Warburger Strasse 100, 33098 Paderborn, Germany
| | - Ying Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Chunzi Xing
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China
| | - Meini Gao
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China
| | - Haitao Dai
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300072, China
| | - Xiao Wang
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Anlian Pan
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Stefan Schumacher
- Department of Physics and Center for Optoelectronics and Photonics Paderborn (CeOPP), Universität Paderborn, Warburger Strasse 100, 33098 Paderborn, Germany
- Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - Tingge Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Lovett S, Walker PM, Osipov A, Yulin A, Naik PU, Whittaker CE, Shelykh IA, Skolnick MS, Krizhanovskii DN. Observation of Zitterbewegung in photonic microcavities. LIGHT, SCIENCE & APPLICATIONS 2023; 12:126. [PMID: 37221208 DOI: 10.1038/s41377-023-01162-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023]
Abstract
We present and experimentally study the effects of the photonic spin-orbit coupling on the real space propagation of polariton wavepackets in planar semiconductor microcavities and polaritonic analogues of graphene. In particular, we demonstrate the appearance of an analogue Zitterbewegung effect, a term which translates as 'trembling motion' in English, which was originally proposed for relativistic Dirac electrons and consisted of the oscillations of the centre of mass of a wavepacket in the direction perpendicular to its propagation. For a planar microcavity, we observe regular Zitterbewegung oscillations whose amplitude and period depend on the wavevector of the polaritons. We then extend these results to a honeycomb lattice of coupled microcavity resonators. Compared to the planar cavity, such lattices are inherently more tuneable and versatile, allowing simulation of the Hamiltonians of a wide range of important physical systems. We observe an oscillation pattern related to the presence of the spin-split Dirac cones in the dispersion. In both cases, the experimentally observed oscillations are in good agreement with theoretical modelling and independently measured bandstructure parameters, providing strong evidence for the observation of Zitterbewegung.
Collapse
Affiliation(s)
- Seth Lovett
- Department of Physics and Astronomy, University of Sheffield, S3 7RH, Sheffield, UK
| | - Paul M Walker
- Department of Physics and Astronomy, University of Sheffield, S3 7RH, Sheffield, UK.
| | - Alexey Osipov
- Department of Physics and Technology, ITMO University, St. Petersburg, 197101, Russia
| | - Alexey Yulin
- Department of Physics and Technology, ITMO University, St. Petersburg, 197101, Russia
| | - Pooja Uday Naik
- Department of Physics and Astronomy, University of Sheffield, S3 7RH, Sheffield, UK
| | - Charles E Whittaker
- Department of Physics and Astronomy, University of Sheffield, S3 7RH, Sheffield, UK
| | - Ivan A Shelykh
- Department of Physics and Technology, ITMO University, St. Petersburg, 197101, Russia
- Science Institute, University of Iceland, Dunhagi 3, IS-107, Reykjavik, Iceland
| | - Maurice S Skolnick
- Department of Physics and Astronomy, University of Sheffield, S3 7RH, Sheffield, UK
| | | |
Collapse
|
3
|
Łempicka-Mirek K, Król M, Sigurdsson H, Wincukiewicz A, Morawiak P, Mazur R, Muszyński M, Piecek W, Kula P, Stefaniuk T, Kamińska M, De Marco L, Lagoudakis PG, Ballarini D, Sanvitto D, Szczytko J, Piętka B. Electrically tunable Berry curvature and strong light-matter coupling in liquid crystal microcavities with 2D perovskite. SCIENCE ADVANCES 2022; 8:eabq7533. [PMID: 36197989 PMCID: PMC9534495 DOI: 10.1126/sciadv.abq7533] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
The field of spinoptronics is underpinned by good control over photonic spin-orbit coupling in devices that have strong optical nonlinearities. Such devices might hold the key to a new era of optoelectronics where momentum and polarization degrees of freedom of light are interwoven and interfaced with electronics. However, manipulating photons through electrical means is a daunting task given their charge neutrality. In this work, we present electrically tunable microcavity exciton-polariton resonances in a Rashba-Dresselhaus spin-orbit coupling field. We show that different spin-orbit coupling fields and the reduced cavity symmetry lead to tunable formation of the Berry curvature, the hallmark of quantum geometrical effects. For this, we have implemented an architecture of a photonic structure with a two-dimensional perovskite layer incorporated into a microcavity filled with nematic liquid crystal. Our work interfaces spinoptronic devices with electronics by combining electrical control over both the strong light-matter coupling conditions and artificial gauge fields.
Collapse
Affiliation(s)
- Karolina Łempicka-Mirek
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, PL-02-093 Warsaw, Poland
| | - Mateusz Król
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, PL-02-093 Warsaw, Poland
| | - Helgi Sigurdsson
- Science Institute, University of Iceland, Dunhagi 3, IS-107 Reykjavik, Iceland
- Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK
| | - Adam Wincukiewicz
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, PL-02-093 Warsaw, Poland
| | - Przemysław Morawiak
- Institute of Applied Physics, Military University of Technology, Warsaw, Poland
| | - Rafał Mazur
- Institute of Applied Physics, Military University of Technology, Warsaw, Poland
| | - Marcin Muszyński
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, PL-02-093 Warsaw, Poland
| | - Wiktor Piecek
- Institute of Applied Physics, Military University of Technology, Warsaw, Poland
| | - Przemysław Kula
- Institute of Chemistry, Military University of Technology, Warsaw, Poland
| | - Tomasz Stefaniuk
- Institute of Geophysics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland
| | - Maria Kamińska
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, PL-02-093 Warsaw, Poland
| | - Luisa De Marco
- CNR-Nanotec, Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
| | - Pavlos G. Lagoudakis
- Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK
- Hybrid Photonics Laboratory, Skolkovo Institute of Science and Technology, Territory of Innovation Center Skolkovo, 6 Bolshoy Boulevard 30, Building 1, 121205 Moscow, Russia
| | - Dario Ballarini
- CNR-Nanotec, Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
| | - Daniele Sanvitto
- CNR-Nanotec, Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
| | - Jacek Szczytko
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, PL-02-093 Warsaw, Poland
| | - Barbara Piętka
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, PL-02-093 Warsaw, Poland
| |
Collapse
|
4
|
Claude F, Jacquet MJ, Usciati R, Carusotto I, Giacobino E, Bramati A, Glorieux Q. High-Resolution Coherent Probe Spectroscopy of a Polariton Quantum Fluid. PHYSICAL REVIEW LETTERS 2022; 129:103601. [PMID: 36112465 DOI: 10.1103/physrevlett.129.103601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/29/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Characterizing elementary excitations in quantum fluids is essential to study their collective effects. We present an original angle-resolved coherent probe spectroscopy technique to study the dispersion of these excitation modes in a fluid of polaritons under resonant pumping. Thanks to the unprecedented spectral and spatial resolution, we observe directly the low-energy phononic behavior and detect the negative-energy modes, i.e., the ghost branch, of the dispersion relation. In addition, we reveal narrow spectral features precursory of dynamical instabilities due to the intrinsic out-of-equilibrium nature of the system. This technique provides the missing tool for the quantitative study of quantum hydrodynamics in polariton fluids.
Collapse
Affiliation(s)
- F Claude
- Laboratoire Kastler Brossel, Sorbonne Université, ENS-Université PSL, Collège de France, CNRS, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - M J Jacquet
- Laboratoire Kastler Brossel, Sorbonne Université, ENS-Université PSL, Collège de France, CNRS, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - R Usciati
- INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, via Sommarive 14, I-38123 Trento, Italy
| | - I Carusotto
- INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, via Sommarive 14, I-38123 Trento, Italy
| | - E Giacobino
- Laboratoire Kastler Brossel, Sorbonne Université, ENS-Université PSL, Collège de France, CNRS, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - A Bramati
- Laboratoire Kastler Brossel, Sorbonne Université, ENS-Université PSL, Collège de France, CNRS, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Q Glorieux
- Laboratoire Kastler Brossel, Sorbonne Université, ENS-Université PSL, Collège de France, CNRS, 4 place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|
5
|
Su R, Estrecho E, Biegańska D, Huang Y, Wurdack M, Pieczarka M, Truscott AG, Liew TCH, Ostrovskaya EA, Xiong Q. Direct measurement of a non-Hermitian topological invariant in a hybrid light-matter system. SCIENCE ADVANCES 2021; 7:eabj8905. [PMID: 34731010 PMCID: PMC8565900 DOI: 10.1126/sciadv.abj8905] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/13/2021] [Indexed: 05/31/2023]
Abstract
Topology is central to understanding and engineering materials that display robust physical phenomena immune to imperfections. Different topological phases of matter are characterized by topological invariants. In energy-conserving (Hermitian) systems, these invariants are determined by the winding of eigenstates in momentum space. In non-Hermitian systems, a topological invariant is predicted to emerge from the winding of the complex eigenenergies. Here, we directly measure the non-Hermitian topological invariant arising from exceptional points in the momentum-resolved spectrum of exciton polaritons. These are hybrid light-matter quasiparticles formed by photons strongly coupled to electron-hole pairs (excitons) in a halide perovskite semiconductor at room temperature. We experimentally map out both the real (energy) and imaginary (linewidth) parts of the spectrum near the exceptional points and extract the novel topological invariant—fractional spectral winding. Our work represents an essential step toward realization of non-Hermitian topological phases in a condensed matter system.
Collapse
Affiliation(s)
- Rui Su
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Eliezer Estrecho
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies and Nonlinear Physics Centre, Research School of Physics, The Australian National University, Canberra 2601, Australia
| | - Dąbrówka Biegańska
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies and Nonlinear Physics Centre, Research School of Physics, The Australian National University, Canberra 2601, Australia
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Yuqing Huang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Matthias Wurdack
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies and Nonlinear Physics Centre, Research School of Physics, The Australian National University, Canberra 2601, Australia
| | - Maciej Pieczarka
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies and Nonlinear Physics Centre, Research School of Physics, The Australian National University, Canberra 2601, Australia
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Andrew G. Truscott
- Laser Physics Centre, Research School of Physics, The Australian National University, Canberra 2601, Australia
| | - Timothy C. H. Liew
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- MajuLab, International Joint Research Unit UMI 3654, CNRS, Université Côte d’Azur, Sorbonne Université, National University of Singapore, Nanyang Technological University, Singapore, Singapore
| | - Elena A. Ostrovskaya
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies and Nonlinear Physics Centre, Research School of Physics, The Australian National University, Canberra 2601, Australia
| | - Qihua Xiong
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P.R. China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P.R. China
- Beijing Innovation Center for Future Chips, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|