1
|
Gerry M, Wang JJ, Li J, Shein-Lumbroso O, Tal O, Segal D. Machine learning delta-T noise for temperature bias estimation. J Chem Phys 2025; 162:084108. [PMID: 40008946 DOI: 10.1063/5.0250879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Delta-T shot noise is activated in temperature-biased electronic junctions, down to the atomic scale. It is characterized by a quadratic dependence on the temperature difference and a nonlinear relationship with the transmission coefficients of partially opened conduction channels. In this work, we demonstrate that delta-T noise, measured across an ensemble of atomic-scale junctions, can be utilized to estimate the temperature bias in these systems. Our approach employs a supervised machine learning algorithm to train a neural network, with input features being the scaled electrical conductance, the delta-T noise, and the mean temperature. Due to limited experimental data, we generate synthetic datasets, designed to mimic experiments. The neural network, trained on these synthetic data, was subsequently applied to predict temperature biases from experimental datasets. Using performance metrics, we demonstrate that the mean bias-the deviation of predicted temperature differences from their true value-is less than 1 K for junctions with conductance up to 4G0. Our study highlights that, while a single delta-T noise measurement is insufficient for accurately estimating the applied temperature bias due to noise contributions from other sources, averaging over an ensemble of junctions enables predictions within experimental uncertainties. This suggests that machine learning approaches can be utilized for estimation of temperature biases and similarly other stimuli in electronic junctions.
Collapse
Affiliation(s)
- Matthew Gerry
- Department of Physics, University of Toronto, 60 Saint George St., Toronto, Ontario M5S 1A7, Canada
| | - Jonathan J Wang
- Department of Chemistry, University of Toronto, 80 Saint George St., Toronto, Ontario M5S 3H6, Canada
| | - Joanna Li
- Department of Physics, University of Toronto, 60 Saint George St., Toronto, Ontario M5S 1A7, Canada
- Division of Engineering Science, University of Toronto, 42 Saint George St., Toronto, Ontario M5S 2E4, Canada
| | - Ofir Shein-Lumbroso
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Oren Tal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Dvira Segal
- Department of Physics, University of Toronto, 60 Saint George St., Toronto, Ontario M5S 1A7, Canada
- Department of Chemistry, University of Toronto, 80 Saint George St., Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
2
|
Shimada Y, Akatsuka H. Sensitivity Analysis of Excited-State Population in Plasma Based on Relative Entropy. ENTROPY (BASEL, SWITZERLAND) 2024; 26:782. [PMID: 39330115 PMCID: PMC11431318 DOI: 10.3390/e26090782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
A highly versatile evaluation method is proposed for transient plasmas based on statistical physics. It would be beneficial in various industrial sectors, including semiconductors and automobiles. Our research focused on low-energy plasmas in laboratory settings, and they were assessed via our proposed method, which incorporates relative entropy and fractional Brownian motion, based on a revised collisional-radiative model. By introducing an indicator to evaluate how far a system is from its steady state, both the trend of entropy and the radiative process' contribution to the lifetime of excited states were considered. The high statistical weight of some excited states may act as a bottleneck in the plasma's energy relaxation throughout the system to a steady state. By deepening our understanding of how energy flows through plasmas, we anticipate potential contributions to resolving global environmental issues and fostering technological innovation in plasma-related industrial fields.
Collapse
Affiliation(s)
- Yosuke Shimada
- Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, 2-12-1-N1-10, O-Okayama, Meguro-ku, Tokyo 152-8550, Japan
- Kanagawa Prefectural Police Headquarters, 155-1 Yamashita-cho, Naka-ku, Yokohama, Kanagawa 231-0023, Japan
| | - Hiroshi Akatsuka
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1-N1-10, O-Okayama, Meguro-ku, Tokyo 152-8550, Japan;
| |
Collapse
|
3
|
Mohanta S, Agarwalla BK. Full statistics of nonequilibrium heat and work for many-body quantum Otto engines and universal bounds: A nonequilibrium Green's function approach. Phys Rev E 2023; 108:064127. [PMID: 38243491 DOI: 10.1103/physreve.108.064127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/21/2023] [Indexed: 01/21/2024]
Abstract
We consider a generic four-stroke quantum Otto engine consisting of two unitary and two thermalization strokes with an arbitrary many-body working medium. Using the Schwinger-Keldysh nonequilibrium Green's function formalism, we provide an analytical expression for the cumulant generating function corresponding to the joint probability distribution of nonequilibrium work and heat. The obtained result is valid up to the second order of the external driving amplitude. We then focus on the linear response limit and obtained Onsager's transport coefficients for the generic Otto cycle and show that the traditional fluctuation-dissipation relation for the total work is violated in the quantum domain, whereas for heat it is preserved. This leads to remarkable consequences in obtaining universal constraints on heat and work fluctuations for engine and refrigerator regimes of the Otto cycle and further allows us to make connections to the thermodynamic uncertainty relations. These findings are illustrated using a paradigmatic model that can be feasibly implemented in experiments.
Collapse
Affiliation(s)
- Sandipan Mohanta
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| | - Bijay Kumar Agarwalla
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
4
|
El Makouri A, Slaoui A, Ahl Laamara R. Monitored nonadiabatic and coherent-controlled quantum unital Otto heat engines: First four cumulants. Phys Rev E 2023; 108:044114. [PMID: 37978648 DOI: 10.1103/physreve.108.044114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/18/2023] [Indexed: 11/19/2023]
Abstract
Recently, measurement-based quantum thermal machines have drawn more attention in the field of quantum thermodynamics. However, the previous results on quantum Otto heat engines were either limited to special unital and nonunital channels in the bath stages, or a specific driving protocol at the work strokes and assuming the cycle being time-reversal symmetric, i.e., V^{†}=U (or V=U). In this paper, we consider a single spin-1/2 quantum Otto heat engine, by first replacing one of the heat baths by an arbitrary unital channel, and then we give the exact analytical expression of the characteristic function from which all the cumulants of heat and work emerge. We prove that under the effect of monitoring, ν_{2}>ν_{1} is a necessary condition for positive work, either for a symmetric or asymmetric-driven Otto cycle. Furthermore, going beyond the average we show that the ratio of the fluctuations of work and heat is lower and upper-bounded when the system is working as a heat engine. However, differently from the previous results in the literature, we consider the third and fourth cumulants as well. It is shown that the ratio of the third (fourth) cumulants of work and heat is not upper-bounded by unity nor lower-bounded by the third (fourth) power of the efficiency, as is the case for the ratio of fluctuations. Finally, we consider applying a specific unital map that plays the role of a heat bath in a coherently superposed manner, and we show the role of the initial coherence of the control qubit on efficiency, on the average work and its relative fluctuations.
Collapse
Affiliation(s)
- Abdelkader El Makouri
- LPHE-Modeling and Simulation, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Abdallah Slaoui
- LPHE-Modeling and Simulation, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- Centre of Physics and Mathematics, CPM, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Rachid Ahl Laamara
- LPHE-Modeling and Simulation, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- Centre of Physics and Mathematics, CPM, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
5
|
Mohanta S, Saha M, Venkatesh BP, Agarwalla BK. Bounds on nonequilibrium fluctuations for asymmetrically driven quantum Otto engines. Phys Rev E 2023; 108:014118. [PMID: 37583162 DOI: 10.1103/physreve.108.014118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 06/21/2023] [Indexed: 08/17/2023]
Abstract
For a four-stroke asymmetrically driven quantum Otto engine with working medium modeled by a single qubit, we study the bounds on nonequilibrium fluctuations of work and heat. We find strict relations between the fluctuations of work and individual heat for hot and cold reservoirs in arbitrary operational regimes. Focusing on the engine regime, we show that the ratio of nonequilibrium fluctuations of output work to input heat from the hot reservoir is both upper and lower bounded. As a consequence, we establish a hierarchical relation between the relative fluctuations of work and heat for both cold and hot reservoirs and further make a connection with the thermodynamic uncertainty relations. We discuss the fate of these bounds also in the refrigerator regime. The reported bounds, for such asymmetrically driven engines, emerge once both the time-forward and the corresponding reverse cycles of the engine are considered on an equal footing. We also extend our study and report bounds for a parametrically driven harmonic oscillator Otto engine.
Collapse
Affiliation(s)
- Sandipan Mohanta
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| | - Madhumita Saha
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| | - B Prasanna Venkatesh
- Department of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Bijay Kumar Agarwalla
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
6
|
Das A, Mahunta S, Agarwalla BK, Mukherjee V. Precision bound and optimal control in periodically modulated continuous quantum thermal machines. Phys Rev E 2023; 108:014137. [PMID: 37583225 DOI: 10.1103/physreve.108.014137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/07/2023] [Indexed: 08/17/2023]
Abstract
We use Floquet formalism to study fluctuations in periodically modulated continuous quantum thermal machines. We present a generic theory for such machines, followed by specific examples of sinusoidal, optimal, and circular modulations, respectively. The thermodynamic uncertainty relations (TUR) hold for all modulations considered. Interestingly, in the case of sinusoidal modulation, the TUR ratio assumes a minimum at the heat engine to refrigerator transition point, while the chopped random basis optimization protocol allows us to keep the ratio small for a wide range of modulation frequencies. Furthermore, our numerical analysis suggests that TUR can show signatures of heat engine to refrigerator transition, for more generic modulation schemes. We also study bounds in fluctuations in the efficiencies of such machines; our results indicate that fluctuations in efficiencies are bounded from above for a refrigerator and from below for an engine. Overall, this study emphasizes the crucial role played by different modulation schemes in designing practical quantum thermal machines.
Collapse
Affiliation(s)
- Arpan Das
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5/7, 87-100 Toruń, Poland
| | - Shishira Mahunta
- Department of Physical Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur 760010, India
| | - Bijay Kumar Agarwalla
- Department of Physics, Indian Institute of Science Education and Research Pune, Pune 411008, India
| | - Victor Mukherjee
- Department of Physical Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur 760010, India
| |
Collapse
|
7
|
Shastri R, Venkatesh BP. Optimization of asymmetric quantum Otto engine cycles. Phys Rev E 2022; 106:024123. [PMID: 36109960 DOI: 10.1103/physreve.106.024123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
We consider the optimization of the work output and fluctuations of a finite-time quantum Otto heat engine cycle consisting of compression and expansion work strokes of unequal duration. The asymmetry of the cycle is characterized by a parameter r_{u} giving the ratio of the times for the compression and expansion work strokes. For such an asymmetric quantum Otto engine cycle, with working substance chosen as a harmonic oscillator or a two-level system, we find that the optimal values of r_{u} maximizing the work output and the reliability (defined as the ratio of average work output to its standard deviation) shows discontinuities as a function of the total time taken for the cycle. Moreover we identify cycles of some specific duration where both the work output and the reliability take their largest values for the same value of the asymmetry parameter r_{u}.
Collapse
Affiliation(s)
- Rahul Shastri
- Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | | |
Collapse
|
8
|
Ptaszyński K. Non-Markovian thermal operations boosting the performance of quantum heat engines. Phys Rev E 2022; 106:014114. [PMID: 35974499 DOI: 10.1103/physreve.106.014114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
It is investigated whether non-Markovianity, i.e., the memory effects resulting from the coupling of the system to its environment, can be beneficial for the performance of quantum heat engines. Specifically, two physical models are considered. The first one is a well-known single-qubit Otto engine; the non-Markovian behavior is there implemented by replacing standard thermalization strokes with so-called extremal thermal operations which cannot be realized without the memory effects. The second one is a three-stroke engine in which the cycle consists of two extremal thermal operations and a single qubit rotation. It is shown that the non-Markovian Otto engine can generate more work-per-cycle for a given efficiency than its Markovian counterpart, whereas performance of both setups is superior to the three-stroke engine. Furthermore, both the non-Markovian Otto engine and the three-stroke engine can reduce the work fluctuations in comparison with the Markovian Otto engine, with their relative advantage depending on the performance target. This demonstrates the beneficial influence of non-Markovianity on both the average performance and the stability of operation of quantum heat engines.
Collapse
Affiliation(s)
- Krzysztof Ptaszyński
- Institute of Molecular Physics, Polish Academy of Sciences, Mariana Smoluchowskiego 17, 60-179 Poznań, Poland
| |
Collapse
|
9
|
Frim AG, DeWeese MR. Geometric Bound on the Efficiency of Irreversible Thermodynamic Cycles. PHYSICAL REVIEW LETTERS 2022; 128:230601. [PMID: 35749204 DOI: 10.1103/physrevlett.128.230601] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Stochastic thermodynamics has revolutionized our understanding of heat engines operating in finite time. Recently, numerous studies have considered the optimal operation of thermodynamic cycles acting as heat engines with a given profile in thermodynamic space (e.g., P-V space in classical thermodynamics), with a particular focus on the Carnot engine. In this work, we use the lens of thermodynamic geometry to explore the full space of thermodynamic cycles with continuously varying bath temperature in search of optimally shaped cycles acting in the slow-driving regime. We apply classical isoperimetric inequalities to derive a universal geometric bound on the efficiency of any irreversible thermodynamic cycle and explicitly construct efficient heat engines operating in finite time that nearly saturate this bound for a specific model system. Given the bound, these optimal cycles perform more efficiently than all other thermodynamic cycles operating as heat engines in finite time, including notable cycles, such as those of Carnot, Stirling, and Otto. For example, in comparison to recent experiments, this corresponds to orders of magnitude improvement in the efficiency of engines operating in certain time regimes. Our results suggest novel design principles for future mesoscopic heat engines and are ripe for experimental investigation.
Collapse
Affiliation(s)
- Adam G Frim
- Department of Physics, University of California, Berkeley, Berkeley, California, 94720
| | - Michael R DeWeese
- Department of Physics, University of California, Berkeley, Berkeley, California, 94720
- Redwood Center For Theoretical Neuroscience, University of California, Berkeley, Berkeley, California, 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, 94720
| |
Collapse
|
10
|
Mohanta S, Saryal S, Agarwalla BK. Universal bounds on cooling power and cooling efficiency for autonomous absorption refrigerators. Phys Rev E 2022; 105:034127. [PMID: 35428079 DOI: 10.1103/physreve.105.034127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/23/2022] [Indexed: 11/07/2022]
Abstract
For steady-state autonomous absorption refrigerators operating in the linear response regime, we show that there exists a hierarchy between the relative fluctuation of currents for cold, hot, and work terminals. Our proof requires the Onsager reciprocity relation along with the refrigeration condition that sets the direction of the mean currents for each terminal. As a consequence, the universal bounds on the mean cooling power, obtained following the thermodynamic uncertainty relations, follow a hierarchy. Interestingly, within this hierarchy, the tightest bound is given in terms of the work current fluctuation. Furthermore, the relative uncertainty hierarchy introduces a bound on cooling efficiency that is tighter than the bound obtained from the thermodynamic uncertainty relations. Interestingly, all of these bounds saturate in the tight-coupling limit. We test the validity of our results for two paradigmatic absorption refrigerator models: (i) a four-level working fluid and (ii) a two-level working fluid, operating in the weak (additive) and strong (multiplicative) system-bath interaction regimes, respectively.
Collapse
Affiliation(s)
- Sandipan Mohanta
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Sushant Saryal
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Bijay Kumar Agarwalla
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| |
Collapse
|
11
|
Manzano G, Roldán É. Survival and extreme statistics of work, heat, and entropy production in steady-state heat engines. Phys Rev E 2022; 105:024112. [PMID: 35291142 DOI: 10.1103/physreve.105.024112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
We derive universal bounds for the finite-time survival probability of the stochastic work extracted in steady-state heat engines and the stochastic heat dissipated to the environment. We also find estimates for the time-dependent thresholds that these quantities do not surpass with a prescribed probability. At long times, the tightest thresholds are proportional to the large deviation functions of stochastic entropy production. Our results entail an extension of martingale theory for entropy production, for which we derive universal inequalities involving its maximum and minimum statistics that are valid for generic Markovian dynamics in nonequilibrium stationary states. We test our main results with numerical simulations of a stochastic photoelectric device.
Collapse
Affiliation(s)
- Gonzalo Manzano
- Institute for Cross-Disciplinary Physics and Complex Systems IFISC (UIB-CSIC), Campus Universitat Illes Balears, E-07122 Palma de Mallorca, Spain
- Institute for Quantum Optics and Quantum Information IQOQI, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
| | - Édgar Roldán
- ICTP-Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| |
Collapse
|
12
|
Saryal S, Mohanta S, Agarwalla BK. Bounds on fluctuations for machines with broken time-reversal symmetry: A linear response study. Phys Rev E 2022; 105:024129. [PMID: 35291179 DOI: 10.1103/physreve.105.024129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
For a generic class of machines with broken time-reversal symmetry we show that in the linear response regime the relative fluctuation of the sum of output currents for time-forward and time-reversed processes is always lower bounded by the corresponding relative fluctuation of the sum of input currents. This bound is received when the same operating condition, for example, engine, refrigerator, or pump, is imposed on both the forward and the reversed processes. As a consequence, universal upper and lower bounds for the ratio between fluctuations of output and input current are obtained. Furthermore, we establish an important connection between our results and the recently obtained generalized thermodynamic uncertainty relations for time-reversal symmetry-broken systems. We illustrate these findings for two different types of machines: (1) a steady-state three-terminal quantum thermoelectric setup in presence of an external magnetic field and (2) a periodically driven classical Brownian heat engine.
Collapse
Affiliation(s)
- Sushant Saryal
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| | - Sandipan Mohanta
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| | - Bijay Kumar Agarwalla
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|