Christianen A, Cirac JI, Schmidt R. Chemistry of a Light Impurity in a Bose-Einstein Condensate.
PHYSICAL REVIEW LETTERS 2022;
128:183401. [PMID:
35594082 DOI:
10.1103/physrevlett.128.183401]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Similar to an electron in a solid, an impurity in an atomic Bose-Einstein condensate (BEC) is dressed by excitations from the medium, forming a polaron quasiparticle with modified properties. This impurity can also undergo chemical recombination with atoms from the BEC, a process resonantly enhanced when universal three-body Efimov bound states cross the continuum. To study the interplay between these phenomena, we use a Gaussian state variational method able to describe both Efimov physics and arbitrarily many excitations of the BEC. We show that the polaron cloud contributes to bound state formation, leading to a shift of the Efimov resonance to smaller interaction strengths. This shifted scattering resonance marks the onset of a polaronic instability towards the decay into large Efimov clusters and fast recombination, offering a remarkable example of chemistry in a quantum medium.
Collapse