1
|
Zhang W, Liu S, Zhang S, Wang HF. Nonreciprocal unconventional magnon blockade induced by Barnett effect and parametric amplification. OPTICS EXPRESS 2025; 33:3339-3349. [PMID: 39876460 DOI: 10.1364/oe.545314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025]
Abstract
We propose a scheme to achieve nonreciprocal unconventional magnon blockade (UMB) via the Barnett effect in a spinning ferrimagnetic yttrium-iron-garnet sphere coupled to a microwave cavity that interacts with a parametric amplifier. We show that, with a strong cavity-magnon coupling regime, giant nonreciprocal UMB can emerge by appropriately choosing two sets of parameters in this system, i.e., strong magnon antibunching occurs only from one direction of the magnetic field but not from the other side. This nonreciprocity originates from the fact that the Barnett shift induced by the Barnett effect can be adjusted from positive to negative values by changing the magnetic field direction, resulting in different frequencies of the magnon mode. Moreover, we demonstrate that parametric amplification is an indispensable factor for constructing the pathways of quantum destructive interference to achieve strong UMB. Furthermore, we give analytical parameter conditions to realize strong UMB, which is proven to be in great agreement with numerical results. Interestingly, the nonreciprocity against magnon thermal occupation is remarkably enhanced by increasing the amplitude of the driving field. Notably, the critical temperature for observing nonreciprocal UMB is as high as 133 mK, and the sphere needs to spin at MHz values to achieve the UMB effect. Our work provides an avenue to realize nonreciprocal single-magnon devices and has potential applications in quantum information processing and quantum communication.
Collapse
|
2
|
Li J, Yang Y, Xu XW, Lu J, Jing H, Zhou L. Nonreciprocal single-photon band structure in a coupled-spinning-resonator chain. OPTICS EXPRESS 2025; 33:2487-2498. [PMID: 39876397 DOI: 10.1364/oe.550347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025]
Abstract
We analyze the single-photon band structure and the transport of a single photon in a one-dimensional coupled-spinning-resonator chain. The time-reversal symmetry of the resonators chain is broken by the spinning of the resonators, instead of external or synthetic magnetic field. Two nonreciprocal single-photon band gaps can be obtained in the coupled-spinning-resonator chain, whose width depends on the angular velocity of the spinning resonator. Based on the nonreciprocal band gaps, we can implement a single photon circulator at multiple frequency windows, and the direction of photon cycling is opposite for different band gaps. In addition, reciprocal single-photon band structures can also be realized in the coupled-spinning-resonator chain when all resonators rotate in the same direction with equal angular velocity. We believe our work opens a new route to achieve, manipulate, and switch nonreciprocal or reciprocal single-photon band structures, and provides new opportunities to realize novel single-photon devices.
Collapse
|
3
|
Tang L, Tang JS, Xia K. Integrated all-optical nonreciprocity based on a moving index grating. OPTICS EXPRESS 2025; 33:2205-2216. [PMID: 39876375 DOI: 10.1364/oe.546389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025]
Abstract
Optical nonreciprocal devices are critical components in integrated photonic systems and scalable quantum technologies. We propose an all-optical approach to achieve integrated optical nonreciprocity utilizing a moving index grating. The grating is generated in a nonlinear optical waveguide through the Kerr effect by driving the waveguide with two counter-propagating pump fields of slightly different frequencies. Based on this moving index grating, our system exhibits exceptional versatility by achieving both nonreciprocal transmission and reflection of signal fields. We obtain an all-optical isolator that achieves near-unity isolation contrast and negligible insertion loss while effectively addressing the dynamic reciprocity challenge. Our protocol establishes a novel approach for achieving integrated all-optical nonreciprocal devices, paving the way for advanced integrated photonic circuits.
Collapse
|
4
|
He XW, Wang ZY, Han X, Wang HF, Zhang S. Nonreciprocal magnon laser in a spinning cavity optomagnonic system. OPTICS LETTERS 2025; 50:499-502. [PMID: 39815546 DOI: 10.1364/ol.545127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
We introduce a novel, to the best of our knowledge, method to achieve a highly efficient nonreciprocal magnon laser within a spinning cavity optomagnonic system, which integrates a magnon mode and two optical modes. The rotation of the YIG sphere triggers the Barnett effect in the magnon mode and the Sagnac effect in the optical modes. The directional input of a pump light leads to opposite Sagnac-Fizeau frequency shifts in these modes. By adjusting the angular velocity, we can simultaneously control both the Barnett and Sagnac effects. Significantly, increasing the spin angular velocity enhances the system's nonreciprocity and magnon gain, yielding an isolation rate of 38.7 dB and a low-threshold magnon laser. This method presents a promising avenue for developing a nonreciprocal magnon laser, with implications for spintronics and the advancement of nonreciprocal optical devices.
Collapse
|
5
|
Qin W, Miranowicz A, Nori F. Exponentially Improved Dispersive Qubit Readout with Squeezed Light. PHYSICAL REVIEW LETTERS 2024; 133:233605. [PMID: 39714661 DOI: 10.1103/physrevlett.133.233605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/16/2024] [Indexed: 12/24/2024]
Abstract
It has been a long-standing goal to improve dispersive qubit readout with squeezed light. However, injected external squeezing (IES) cannot enable a practically interesting increase in the signal-to-noise ratio (SNR), and simultaneously, the increase of the SNR due to the use of intracavity squeezing (ICS) is even negligible. Here, we counterintuitively demonstrate that using IES and ICS together can lead to an exponential improvement of the SNR for any measurement time, corresponding to a measurement error reduced typically by many orders of magnitude. More remarkably, we find that in a short-time measurement, the SNR is even improved exponentially with twice the squeezing parameter. As a result, we predict a fast and high-fidelity readout. This work offers a promising path toward exploring squeezed light for dispersive qubit readout, with immediate applications in quantum error correction and fault-tolerant quantum computation.
Collapse
Affiliation(s)
- Wei Qin
- Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University, Tianjin 300350, China
- Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wako shi, Saitama 351-0198, Japan
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Tianjin University, Tianjin 300350, China
| | - Adam Miranowicz
- Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wako shi, Saitama 351-0198, Japan
- Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wako shi, Saitama 351-0198, Japan
- Center for Quantum Computing, RIKEN, Wako shi, Saitama 351-0198, Japan
- Department of Physics, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
6
|
Xu J, Mao Y, Li Z, Zuo Y, Zhang J, Yang B, Xu W, Liu N, Deng ZJ, Chen W, Xia K, Qiu CW, Zhu Z, Jing H, Liu K. Single-cavity loss-enabled nanometrology. NATURE NANOTECHNOLOGY 2024; 19:1472-1477. [PMID: 39020101 DOI: 10.1038/s41565-024-01729-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 06/23/2024] [Indexed: 07/19/2024]
Abstract
Optical monitoring of the position and alignment of objects with a precision of only a few nanometres is key in applications such as smart manufacturing and force sensing. Traditional optical nanometrology requires precise nanostructure fabrication, multibeam interference or complex postprocessing algorithms, sometimes hampering wider adoption of this technology. Here we show a simplified, yet robust, approach to achieve nanometric metrology down to 2 nm resolution that eliminates the need for any reference signal for interferometric measurements. We insert an erbium-doped quartz crystal absorber into a single Fabry-Pérot cavity with a length of 3 cm and then induce exceptional points by matching the optical loss with the intercavity coupling. We experimentally achieve a displacement response enhancement of 86 times compared with lossless methods, and theoretically argue that an enhancement of over 450 times, corresponding to subnanometre resolution, may be achievable. We also show a fivefold enhancement in the signal-to-noise ratio, thus demonstrating that non-Hermitian sensors can lead to improved performances over the Hermitian counterpart.
Collapse
Affiliation(s)
- Jipeng Xu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, China
- Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, China
| | - Yuanhao Mao
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, China
| | - Zhipeng Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Yunlan Zuo
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, China
| | - Jianfa Zhang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, China
- Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, China
| | - Biao Yang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, China
- Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, China
| | - Wei Xu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, China
- Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, China
| | - Ning Liu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, China
- Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, China
| | - Zhi Jiao Deng
- Institute for Quantum Science and Technology, College of Science, National University of Defense Technology, Changsha, China
| | - Wei Chen
- College of Meteorology and Oceanography, National University of Defense Technology, Changsha, China
| | - Keyu Xia
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
| | - Zhihong Zhu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, China.
- Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, China.
| | - Hui Jing
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, China.
| | - Ken Liu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, China.
- Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, China.
| |
Collapse
|
7
|
Mastalieva V, Neplokh V, Aybush A, Stovpiaga E, Eurov D, Vinnichenko M, Karaulov D, Kirillenko D, Mozharov A, Sharov V, Kolchanov D, Machnev A, Golubev V, Smirnov A, Ginzburg P, Makarov S, Kurdyukov D, Mukhin I. Second harmonic generation and broad-band photoluminescence in mesoporous Si/SiO 2 nanoparticles. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:3299-3309. [PMID: 39634832 PMCID: PMC11501142 DOI: 10.1515/nanoph-2024-0218] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/17/2024] [Indexed: 12/07/2024]
Abstract
Efficient second harmonic generation and broad-band photoluminescence from deeply subwavelength and nontoxic nanoparticles is essential for nanophotonic applications. Here, we explore nonlinear optical response from mesoporous Si/SiO2, SiO2, and Si nanoparticles, considering various fabrication and treatment procedures. We show that thermal annealing (including femtosecond laser treatment) of mesoporous Si/SiO2 nanoparticles provides the transformation of Si phase from amorphous to crystalline, enhancing the second harmonic and nonlinear photoluminescent response. Notably, the SiO2 mesoporous frame of the considered Si/SiO2 nanoparticles plays a dual positive role for the nonlinear process: it stabilizes the Si material, and SiO2:OH- material has a second-order nonlinearity itself and impacts to the observed second harmonic signal.
Collapse
Affiliation(s)
- Viktoriia Mastalieva
- Alferov University, Khlopina 8/3, 194021, St. Petersburg, Russia
- Ioffe Institute, Polytechnicheskaya Str., 26, 194021, St. Petersburg, Russia
| | - Vladimir Neplokh
- Alferov University, Khlopina 8/3, 194021, St. Petersburg, Russia
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251, St. Petersburg, Russia
| | - Arseniy Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygin Street 4, 119991Moscow, Russia
| | - Ekaterina Stovpiaga
- Ioffe Institute, Polytechnicheskaya Str., 26, 194021, St. Petersburg, Russia
| | - Daniil Eurov
- Ioffe Institute, Polytechnicheskaya Str., 26, 194021, St. Petersburg, Russia
| | - Maksim Vinnichenko
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251, St. Petersburg, Russia
| | - Danila Karaulov
- Ioffe Institute, Polytechnicheskaya Str., 26, 194021, St. Petersburg, Russia
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251, St. Petersburg, Russia
| | - Demid Kirillenko
- Ioffe Institute, Polytechnicheskaya Str., 26, 194021, St. Petersburg, Russia
| | - Alexey Mozharov
- Alferov University, Khlopina 8/3, 194021, St. Petersburg, Russia
| | - Vladislav Sharov
- Alferov University, Khlopina 8/3, 194021, St. Petersburg, Russia
- Ioffe Institute, Polytechnicheskaya Str., 26, 194021, St. Petersburg, Russia
| | | | | | - Valery Golubev
- Ioffe Institute, Polytechnicheskaya Str., 26, 194021, St. Petersburg, Russia
| | - Alexander Smirnov
- Ioffe Institute, Polytechnicheskaya Str., 26, 194021, St. Petersburg, Russia
| | | | - Sergey Makarov
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao266000, Shandong, China
- ITMO University, 197101, St. Petersburg, Russia
| | - Dmitry Kurdyukov
- Ioffe Institute, Polytechnicheskaya Str., 26, 194021, St. Petersburg, Russia
| | - Ivan Mukhin
- Alferov University, Khlopina 8/3, 194021, St. Petersburg, Russia
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, 195251, St. Petersburg, Russia
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao266000, Shandong, China
| |
Collapse
|
8
|
He C, Liang K, Deng X, Liang X, Zhang J, Yu L. Triple Plexcitonic Nonreciprocity of Magnetochiral Plexcitons. NANO LETTERS 2024. [PMID: 39011986 DOI: 10.1021/acs.nanolett.4c02484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Nonreciprocal quantum devices, allowing different transmission efficiencies of light-matter polaritons along opposite directions, are key technologies for modern photonics, yet their miniaturization and fine manipulation remain an open challenge. Here, we report on magnetochiral plexcitons dressed with geometric-time double asymmetry in compact nonreciprocal hybrid metamaterials, leading to triple plexcitonic nonreciprocity with flexible controllability. A general magnetically dressed plexcitonic Born-Kuhn model is developed to reveal the hybrid optical nature and dynamic energy evolution of magnetochiral plexcitons, demonstrating a plexcitonic nonreciprocal mechanism originating from the strong coupling among photon, electron, and spin degrees of freedom. Moreover, we introduce the temperature-controlled knob/switch for magnetochiral plexcitons, achieving precise magnetochiral control and nonreciprocal transmission in a given system. We expect this mechanism and approach to open up a new route for the integration and fine control of on-chip nonreciprocal quantum devices.
Collapse
Affiliation(s)
- Chengmao He
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Kun Liang
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Xuyan Deng
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Xiongyu Liang
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Jiasen Zhang
- School of Physics, Peking University, Beijing, 100871, China
| | - Li Yu
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| |
Collapse
|
9
|
Dong TT, Wang N, Su ZX, Yuan N, Li SY, Yu L, Zhu AD. Enhancement and manipulation of nonreciprocity via dissipative coupling. OPTICS EXPRESS 2024; 32:25726-25739. [PMID: 39538456 DOI: 10.1364/oe.529035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/18/2024] [Indexed: 11/16/2024]
Abstract
Classical and quantum nonreciprocity have important applications in information processing due to their special one-way controllability for physical systems. In this paper we investigate the nonreciprocal transmission and quantum correlation by introducing the dissipative coupling into a linear coupling system consisting of two microdisk resonators. Our research results demonstrate that even in the case of a stationary resonator, dissipative coupling can effectively induce nonreciprocity within the system. Moreover, the degree of nonreciprocity increases with the dissipative coupling strength. Importantly, the phase shift between the dissipative coupling and coherent coupling serves as a critical factor for controlling both nonreciprocal transmision and one-way quantum steering. Consequently, the introduction of dissipative coupling not only enhances the nonreciprocal transmission and nonreciprocal quantum correlation but also enables on-demand manipulation of nonreciprocity. This highlights dissipation as an effective means for manipulating classical and quantum nonreciprocity, thus playing a favorable role in chiral quantum networks.
Collapse
|
10
|
Liang L, Zhang X, Wang C, Liu J, Fan L, Liang C, Liang L, Li F, Wu Q, Poo Y. One-way valley-locked waveguide with a large channel achieved by all-dielectric photonic crystals. OPTICS EXPRESS 2024; 32:23758-23766. [PMID: 39538831 DOI: 10.1364/oe.525228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/22/2024] [Indexed: 11/16/2024]
Abstract
One-way transmission of light constitutes the cornerstone of modern photonic circuits. In the realm of photonic devices, it has been widely utilized in isolators, circulators, etc. Recent topology in artificial materials, an unprecedented degree of freedom, has been proposed to solve the effect of impurities on one-way transmission. However, in view of the bulk-edge correspondence, the spatial width of the transmission channel with uniform field distribution is quite narrow and needs further exploration. In this paper, we proposed a one-way valley-locked waveguide with a large channel in an all-dielectric reciprocal photonic crystal. Quite different from the topological edge states, our waveguide is topologically trivial; the unidirectional property comes from the bulk modes with valley-lock in the vicinity of Dirac points, which can naturally fully utilize the whole dimension of the structure. Additionally, such one-way bulk modes keep single mode regardless of the channel width increasing, along with uniform electrical field distribution across the entire channel, which opens a new avenue for large channel optical devices.
Collapse
|
11
|
Zhu GL, Hu CS, Wang H, Qin W, Lü XY, Nori F. Nonreciprocal Superradiant Phase Transitions and Multicriticality in a Cavity QED System. PHYSICAL REVIEW LETTERS 2024; 132:193602. [PMID: 38804940 DOI: 10.1103/physrevlett.132.193602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/06/2024] [Accepted: 04/01/2024] [Indexed: 05/29/2024]
Abstract
We demonstrate the emergence of nonreciprocal superradiant phase transitions and novel multicriticality in a cavity quantum electrodynamics system, where a two-level atom interacts with two counterpropagating modes of a whispering-gallery-mode microcavity. The cavity rotates at a certain angular velocity and is directionally squeezed by a unidirectional parametric pumping χ^{(2)} nonlinearity. The combination of cavity rotation and directional squeezing leads to nonreciprocal first- and second-order superradiant phase transitions. These transitions do not require ultrastrong atom-field couplings and can be easily controlled by the external pump field. Through a full quantum description of the system Hamiltonian, we identify two types of multicritical points in the phase diagram, both of which exhibit controllable nonreciprocity. These results open a new door for all-optical manipulation of superradiant transitions and multicritical behaviors in light-matter systems, with potential applications in engineering various integrated nonreciprocal quantum devices.
Collapse
Affiliation(s)
- Gui-Lei Zhu
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wakoshi, Saitama 351-0198, Japan
| | - Chang-Sheng Hu
- Department of Physics, Anhui Normal University, Wuhu 241000, China
| | - Hui Wang
- Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wakoshi, Saitama 351-0198, Japan
| | - Wei Qin
- Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wakoshi, Saitama 351-0198, Japan
- Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University, Tianjin 300350, China
| | - Xin-You Lü
- School of Physics, Huazhong University of Science and Technology and Wuhan Institute of Quantum Technology, Wuhan 430074, China
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wakoshi, Saitama 351-0198, Japan
- Quantum Computing Center, RIKEN, Wakoshi, Saitama 351-0198, Japan
- Department of Physics, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
12
|
Wu H, Tang J, Chen M, Xiao M, Lu Y, Xia K, Nori F. Passive magnetic-free broadband optical isolator based on unidirectional self-induced transparency. OPTICS EXPRESS 2024; 32:11010-11021. [PMID: 38570960 DOI: 10.1364/oe.507019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Achieving a broadband nonreciprocal device without gain and any external bias is very challenging and highly desirable for modern photonic technologies and quantum networks. Here we theoretically propose a passive and magnetic-free all-optical isolator for a femtosecond laser pulse by exploiting a new mechanism of unidirectional self-induced transparency, obtained with a nonlinear medium followed by a normal absorbing medium at one side. The transmission contrast between the forward and backward directions can reach 14.3 dB for a 2π - 5 fs laser pulse. The 20 dB bandwidth is about 56 nm, already comparable with a magneto-optical isolator. This work provides a new mechanism which may benefit non-magnetic isolation of ultrashort laser pulses.
Collapse
|
13
|
Huang KW, Wang X, Qiu QY, Xiong H. Nonreciprocal magnon blockade via the Barnett effect. OPTICS LETTERS 2024; 49:758-761. [PMID: 38300108 DOI: 10.1364/ol.512264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/15/2024] [Indexed: 02/02/2024]
Abstract
We propose a scheme to achieve nonreciprocal magnon blockade via the Barnett effect in a magnon-based hybrid system. Due to the rotating yttrium iron garnet (YIG) sphere, the Barnett shift induced by the Barnett effect can be tuned from positive to negative via controlling magnetic field direction, leading to nonreciprocity. We show that a nonreciprocal unconventional magnon blockade (UMB) can emerge only from one magnetic field direction but not from the other side. Particularly, by further tuning system parameters, we simultaneously observe a nonreciprocal conventional magnon blockade (CMB) and a nonreciprocal UMB. This result achieves a switch between efficiency (UMB) and purity (CMB) of a single-magnon blockade. Interestingly, stronger UMB can be reached under stronger qubit-magnon coupling, even the strong coupling regime. Moreover, the nonreciprocity of the magnon blockade is sensitive to temperature. This work opens up a way for achieving quantum nonreciprocal magnetic devices and chiral magnon communications.
Collapse
|
14
|
Zhou YR, Zhang QF, Liu FF, Han YH, Gao YP, Fan L, Zhang R, Cao C. Controllable nonreciprocal phonon laser in a hybrid photonic molecule based on directional quantum squeezing. OPTICS EXPRESS 2024; 32:2786-2803. [PMID: 38297799 DOI: 10.1364/oe.512280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/01/2024] [Indexed: 02/02/2024]
Abstract
Here, a scheme for a controllable nonreciprocal phonon laser is proposed in a hybrid photonic molecule system consisting of a whispering-gallery mode (WGM) optomechanical resonator and a χ(2)-nonlinear WGM resonator, by directionally quantum squeezing one of two coupled resonator modes. The directional quantum squeezing results in a chiral photon interaction between the resonators and a frequency shift of the squeezed resonator mode with respect to the unsqueezed bare mode. We show that the directional quantum squeezing can modify the effective optomechanical coupling in the optomechanical resonator, and analyze the impacts of driving direction and squeezing extent on the phonon laser action in detail. Our analytical and numerical results indicate that the controllable nonreciprocal phonon laser action can be effectively realized in this system. The proposed scheme uses an all-optical and chip-compatible approach without spinning resonators, which may be more beneficial for integrating and packaging of the system on a chip. Our proposal may provide a new route to realize integratable phonon devices for on-chip nonreciprocal phonon manipulations, which may be used in chiral quantum acoustics, topological phononics, and acoustical information processing.
Collapse
|
15
|
Wu SX, Bai CH, Li G, Yu CS, Zhang T. Quantum squeezing-induced quantum entanglement and EPR steering in a coupled optomechanical system. OPTICS EXPRESS 2024; 32:260-274. [PMID: 38175054 DOI: 10.1364/oe.510160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
We propose a theoretical project in which quantum squeezing induces quantum entanglement and Einstein-Podolsky-Rosen steering in a coupled whispering-gallery-mode optomechanical system. Through pumping the χ(2)-nonlinear resonator with the phase matching condition, the generated squeezed resonator mode and the mechanical mode of the optomechanical resonator can generate strong quantum entanglement and EPR steering, where the squeezing of the nonlinear resonator plays the vital role. The transitions from zero entanglement to strong entanglement and one-way steering to two-way steering can be realized by adjusting the system parameters appropriately. The photon-photon entanglement and steering between the two resonators can also be obtained by deducing the amplitude of the driving laser. Our project does not need an extraordinarily squeezed field, and it is convenient to manipulate and provides a novel and flexible avenue for diverse applications in quantum technology dependent on both optomechanical and photon-photon entanglement and steering.
Collapse
|
16
|
Zheng JB, Chai DK, Wang ZB, Chen GJ, Hu YD, Chen L, Fan HJ, Zhang YL, Dong CH, Zou CL, Guo GC, Ye MY, Lin GW, Lin XM. Magnetic-free polarization rotation in an atomic vapor cell. OPTICS EXPRESS 2024; 32:313-324. [PMID: 38175058 DOI: 10.1364/oe.510933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Magnetic-free nonreciprocal optical devices have attracted great attention in recent years. Here, we investigated the magnetic-free polarization rotation of light in an atom vapor cell. Two mechanisms of magnetic-free nonreciprocity have been realized in ensembles of hot atoms, including electromagnetically induced transparency and optically-induced magnetization. For a linearly polarized input probe light, a rotation angle up to 86.4° has been realized with external control and pump laser powers of 10 mW and is mainly attributed to the optically-induced magnetization effect. Our demonstration offers a new approach to realize nonreciprocal devices, which can be applied to solid-state atom ensembles and may be useful in photonic integrated circuits.
Collapse
|
17
|
He XW, Wang ZY, Han X, Zhang S, Wang HF. Parametrically amplified nonreciprocal magnon laser in a hybrid cavity optomagnonical system. OPTICS EXPRESS 2023; 31:43506-43517. [PMID: 38178442 DOI: 10.1364/oe.509918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024]
Abstract
We propose a scheme to achieve a tunable nonreciprocal magnon laser with parametric amplification in a hybrid cavity optomagnonical system, which consists a yttrium iron garnet (YIG) sphere and a spinning resonator. We demonstrate the control of magnon laser can be enhanced via parametric amplification, which make easier and more convenient to control the magnon laser. Moreover, we analyze and evaluate the effects of pump light input direction and amplification amplitude on the magnon gain and laser threshold power. The results indicate that we can obtian a higher magnon gain and a broader range of threshold power of the magnon laser. In our scheme both the nonreciprocity and magnon gain of the magnon laser can be increased significantly. Our proposal provides a way to obtain a novel nonreciprocal magnon laser and offers new possibilities for both nonreciprocal optics and spin-electronics applications.
Collapse
|
18
|
Geng Y, Pei X, Li G, Lin X, Zhang H, Yan D, Yang H. Spatial susceptibility modulation and controlled unidirectional reflection amplification via four-wave mixing. OPTICS EXPRESS 2023; 31:38228-38239. [PMID: 38017934 DOI: 10.1364/oe.499738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/19/2023] [Indexed: 11/30/2023]
Abstract
Control of unidirectional light propagation is of paramount importantance to optical signal processing and optical communication. Especially, the amplified optical signal can isolate noise well that may provide more applications. In this work, we propose a dynamically modulated regime to realize unidirectional reflection amplification in a short and dense uniform atomic medium, and all atoms are driven into four-level double-Λ type by two coupling fields with linearly varied intensities along x direction and two weak probe fields. Based on four-wave mixing resonance and the broken spatial symmetry, the complete nonreciprocal reflection (unidirectional reflection) can be amplified with reflectivity more than 2.0, even to 6.0. In addition, the width, height, and position of the unidirectional reflection bands can be tunable. Thus, our regime is feasible and may inspire further applications in all-optical networks that require controllable unidirectional light amplification.
Collapse
|
19
|
Liu P, Wen H, Ren L, Shi L, Zhang X. χ (2) nonlinear photonics in integrated microresonators. FRONTIERS OF OPTOELECTRONICS 2023; 16:18. [PMID: 37460874 DOI: 10.1007/s12200-023-00073-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/22/2023] [Indexed: 07/20/2023]
Abstract
Second-order (χ(2)) optical nonlinearity is one of the most common mechanisms for modulating and generating coherent light in photonic devices. Due to strong photon confinement and long photon lifetime, integrated microresonators have emerged as an ideal platform for investigation of nonlinear optical effects. However, existing silicon-based materials lack a χ(2) response due to their centrosymmetric structures. A variety of novel material platforms possessing χ(2) nonlinearity have been developed over the past two decades. This review comprehensively summarizes the progress of second-order nonlinear optical effects in integrated microresonators. First, the basic principles of χ(2) nonlinear effects are introduced. Afterward, we highlight the commonly used χ(2) nonlinear optical materials, including their material properties and respective functional devices. We also discuss the prospects and challenges of utilizing χ(2) nonlinearity in the field of integrated microcavity photonics.
Collapse
Affiliation(s)
- Pengfei Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hao Wen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Linhao Ren
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lei Shi
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Optics Valley Laboratory, Wuhan, 430074, China.
| | - Xinliang Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Optics Valley Laboratory, Wuhan, 430074, China
| |
Collapse
|
20
|
Wang B, Li Y, Shen X, Krolikowski W. Asymmetric wavefront shaping with nonreciprocal 3D nonlinear detour phase hologram. OPTICS EXPRESS 2023; 31:25143-25152. [PMID: 37475326 DOI: 10.1364/oe.490167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
Asymmetric control of light with nonlinear material is of great significance in the design of novel micro-photonic components, such as asymmetric imaging devices and nonreciprocal directional optical filters. However, the use of nonlinear photonic crystals for asymmetric optical transmission, to the best of our knowledge, is still an untouched area of research. Herein we propose the 3D nonlinear detour phase holography for realizing asymmetric SH wavefront shaping by taking advantage of the dependence of the SH phase on the propagation direction of the excitation beam. With the proposed method, the designed nonreciprocal 3D nonlinear detour phase hologram yields SH phases with opposite signs for the forward and backward transmission situations. Moreover, the quasi-phase-matching scheme and orbital angular momentum conservation in the asymmetric SH wavefront shaping process are also discussed. This study conceptually extends the 2D nonlinear detour phase holography into 3D space to build the nonreciprocal 3D nonlinear detour phase hologram for achieving SH twin-image elimination and asymmetric SH wavefront shaping, offering new possibilities for the design of nonreciprocal optical devices.
Collapse
|
21
|
Wang DY, Yan LL, Su SL, Bai CH, Wang HF, Liang E. Squeezing-induced nonreciprocal photon blockade in an optomechanical microresonator. OPTICS EXPRESS 2023; 31:22343-22357. [PMID: 37475347 DOI: 10.1364/oe.493208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/12/2023] [Indexed: 07/22/2023]
Abstract
We propose a scheme to generate nonreciprocal photon blockade in a stationary whispering gallery microresonator system based on two physical mechanisms. One of the two mechanisms is inspired by recent work [Phys. Rev. Lett.128, 083604 (2022)10.1103/PhysRevLett.128.083604], where the quantum squeezing caused by parametric interaction not only shifts the optical frequency of propagating mode but also enhances its optomechanical coupling, resulting in a nonreciprocal conventional photon blockade phenomenon. On the other hand, we also give another mechanism to generate stronger nonreciprocity of photon correlation according to the destructive quantum interference. Comparing these two strategies, the required nonlinear strength of parametric interaction in the second one is smaller, and the broadband squeezed vacuum field used to eliminate thermalization noise is no longer needed. All analyses and optimal parameter relations are further verified by numerically simulating the quantum master equation. Our proposed scheme opens a new avenue for achieving the nonreciprocal single photon source without stringent requirements, which may have critical applications in quantum communication, quantum information processing, and topological photonics.
Collapse
|
22
|
Zhang H, Duan Z. Photon blockade in the Jaynes-Cummings model with two-photon dissipation. OPTICS EXPRESS 2023; 31:22580-22593. [PMID: 37475365 DOI: 10.1364/oe.492302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/11/2023] [Indexed: 07/22/2023]
Abstract
We propose a scheme to generate a single-photon source based on photon blockade in the Jaynes-Cummings (J-C) model with a two-photon dissipation (TPD) process. We present the optimal conditions for conventional/unconventional photon blockade via the wave function method with an effective Hamiltonian involving TPD. The results show that the second-order correlation function for the J-C model with TPD is considerably less than that of the J-C model with single-photon dissipation. Additionally, the average photon number can reach 0.5 in the large atomic detuning regime. This feature makes the J-C model with TPD a high-quality single photon source.
Collapse
|
23
|
Pei XS, Zhang HX, Pan MM, Geng Y, Li TM, Yang H. Two-color unidirectional reflections by modulating the spatial susceptibility in a homogeneous atomic medium. OPTICS EXPRESS 2023; 31:14694-14704. [PMID: 37157328 DOI: 10.1364/oe.488247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Non-reciprocal reflections of optical signals are unusual yet fascinating to achieve the imminent applications of non-reciprocal photonic devices and circuits. The complete non-reciprocal reflection (unidirectional reflection) was recently found to be achievable in a homogeneous medium, if the real and imaginary parts of the probe susceptibility satisfy the spatial Kramers-Kronig (KK) relation. We propose a coherent four-level tripod model for realizing dynamically tunable two-color non-reciprocal reflections by applying two control fields with linearly modulated intensities. We found that, the unidirectional reflection can be obtained if the non-reciprocal frequency regions are located in the electromagnetically induced transparency (EIT) windows. This mechanism is to break the spatial symmetry by the spatial modulation of susceptibility to induce unidirectional reflections, the real and imaginary parts of the probe susceptibility are no longer required to satisfy the spatial KK relation.
Collapse
|
24
|
Li J, Zhang Z, Xu G, Sun H, Dai L, Li T, Qiu CW. Tunable Rectification of Diffusion-Wave Fields by Spatiotemporal Metamaterials. PHYSICAL REVIEW LETTERS 2022; 129:256601. [PMID: 36608240 DOI: 10.1103/physrevlett.129.256601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
The diffusion process is the basis of many branches of science and engineering, and generally obeys reciprocity between two ports of a linear time-invariant medium. Recent research on classical wave dynamics has explored the spatiotemporal modulation to exhibit preferred directions in photons and plasmons. Here we report a distinct rectification effect on diffusion-wave fields by modulating the conductivity and observe nonreciprocal transport of charges. We experimentally create a spatiotemporal diffusion metamaterial, in which a mode transition to zero frequency is realized. A direct current component thereby emerges, showcasing a biased effect on the charge diffusion when the incident fundamental frequency is a multiple of the system modulation frequency. These results may find applications spanning a plethora of diffusive fields in general.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Zhanxiang Zhang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Guoqiang Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Haoran Sun
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Lizhou Dai
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
25
|
Qin W, Miranowicz A, Nori F. Beating the 3 dB Limit for Intracavity Squeezing and Its Application to Nondemolition Qubit Readout. PHYSICAL REVIEW LETTERS 2022; 129:123602. [PMID: 36179165 DOI: 10.1103/physrevlett.129.123602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
While the squeezing of a propagating field can, in principle, be made arbitrarily strong, the cavity-field squeezing is subject to the well-known 3 dB limit, and thus has limited applications. Here, we propose the use of a fully quantum degenerate parametric amplifier (DPA) to beat this squeezing limit. Specifically, we show that by simply applying a two-tone driving to the signal mode, the pump mode can, counterintuitively, be driven by the photon loss of the signal mode into a squeezed steady state with, in principle, an arbitrarily high degree of squeezing. Furthermore, we demonstrate that this intracavity squeezing can increase the signal-to-noise ratio of longitudinal qubit readout exponentially with the degree of squeezing. Correspondingly, an improvement of the measurement error by many orders of magnitude can be achieved even for modest parameters. In stark contrast, using intracavity squeezing of the semiclassical DPA cannot practically increase the signal-to-noise ratio and thus improve the measurement error. Our results extend the range of applications of DPAs and open up new opportunities for modern quantum technologies.
Collapse
Affiliation(s)
- Wei Qin
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Adam Miranowicz
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University 61-614 Poznań, Poland
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Quantum Computing, Wako-shi, Saitama 351-0198, Japan
- Department of Physics, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
26
|
Li J, Zhu C, Yang Y. Squeezed light generated with hyperradiance without nonlinearity. OPTICS LETTERS 2022; 47:3439-3442. [PMID: 35838698 DOI: 10.1364/ol.464060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
We propose that the squeezed light accompanied by hyperradiance is induced by quantum interference in a linear system consisting of a high-quality optical cavity and two coherently driven two-level qubits. When two qubits are placed in the cavity with a distance of integer multiple and one-half of wavelengths (i.e., they have the opposite coupling coefficient to the cavity), we show that squeezed light is generated in the hyperradiance regime under the conditions of strong coupling and weak driving. Simultaneously, Klyshko's criterion alternates up and down at unity when the photon number is even or odd. Moreover, the orthogonal angles of the squeezed light can be controlled by adjusting the frequency detuning between the driving field and the qubits. It can be implemented in a variety of quantum systems, including but not limited to two-level systems such as atoms, ions, quantum dots in single-mode cavities.
Collapse
|
27
|
Huang KW, Wu Y, Si LG. Parametric-amplification-induced nonreciprocal magnon laser. OPTICS LETTERS 2022; 47:3311-3314. [PMID: 35776613 DOI: 10.1364/ol.459917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
We theoretically propose a scheme to achieve all-optical nonreciprocal magnon lasing action in a composite cavity optomagnonical system considering of a yttrium iron garnet sphere coupled to a parametric resonator. The magnon lasing behavior can be engendered via the magnon-induced Brillouin scattering process in the cavity optomagnonical system. By unidirectionally driving the χ(2)-nonlinear resonator with a classical coherent field, the squeezed effect occurs only in the selected direction due to the phase-matching condition, resulting in asymmetric detuning between the two resonators, which is the physical mechanism to generate a nonreciprocal magnon laser. We further examine the gain factor and power threshold of the magnon laser. Moreover, the isolation rate can reach 21 dB by adjusting the amplitude of the parametric amplification. Our work shows a path to obtain an all-optical nonreciprocal magnon laser, which provides a means for the preparation of a coherent magnon laser and laser protection.
Collapse
|
28
|
Tang JS, Nie W, Tang L, Chen M, Su X, Lu Y, Nori F, Xia K. Nonreciprocal Single-Photon Band Structure. PHYSICAL REVIEW LETTERS 2022; 128:203602. [PMID: 35657886 DOI: 10.1103/physrevlett.128.203602] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
We study a single-photon band structure in a one-dimensional coupled-resonator optical waveguide that chirally couples to an array of two-level quantum emitters (QEs). The chiral interaction between the resonator mode and the QE can break the time-reversal symmetry without the magneto-optical effect and an external or synthetic magnetic field. As a result, nonreciprocal single-photon edge states, band gaps, and flat bands appear. By using such a chiral QE coupled-resonator optical waveguide system, including a finite number of unit cells and working in the nonreciprocal band gap, we achieve frequency-multiplexed single-photon circulators with high fidelity and low insertion loss. The chiral QE-light interaction can also protect one-way propagation of single photons against backscattering. Our work opens a new door for studying unconventional photonic band structures without electronic counterparts in condensed matter and exploring its applications in the quantum regime.
Collapse
Affiliation(s)
- Jiang-Shan Tang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
- School of Physics, Nanjing University, Nanjing 210023, China
| | - Wei Nie
- RIKEN Quantum Computing Center, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University, Tianjin 300350, China
| | - Lei Tang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Mingyuan Chen
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Xin Su
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Yanqing Lu
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
- School of Physics, Nanjing University, Nanjing 210023, China
| | - Franco Nori
- RIKEN Quantum Computing Center, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| | - Keyu Xia
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
- School of Physics, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
- Key Laboratory of Intelligent Optical Sensing and Manipulation (Nanjing University), Ministry of Education, Nanjing 210023, China
| |
Collapse
|
29
|
Wang Y, Shu F, Shen Z, Chai C, Zhang Y, Dong C, Zou Z. 基于回音壁微腔的非互易光子器件. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|