1
|
Nava-Sedeño JM, Klages R, Hatzikirou H, Sevilla FJ, Deutsch A. Individual particle persistence antagonizes global ordering in populations of nematically aligning self-propelled particles. Phys Rev E 2025; 111:025409. [PMID: 40103153 DOI: 10.1103/physreve.111.025409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/17/2025] [Indexed: 03/20/2025]
Abstract
The transition from individual to collective motion plays a significant role in many biological processes. While the implications of different types of particle-particle interactions for the emergence of particular modes of collective motion have been well studied, it is unclear how particular types of individual migration patterns influence collective motion. Here, motivated by swarming bacteria Myxococcus xanthus, we investigate the combined effects of the individual pattern of migration and particle-particle interactions on the emergence of collective migration. We analyze the effects of a feature of individual pattern migration, the persistence of motion, on the collective properties of the system that emerge from interactions among individuals, particularly when nematic velocity alignment interaction mediates collective dynamics. We find, through computer simulations and mathematical analysis, that an initially disordered migratory state can become globally ordered by increasing either the particle-particle alignment interaction strength or the persistence of individual migration. In contrast, we find that persistence prevents the emergence of global nematic order when both persistence and nematic alignment are comparatively high. We conclude that behavior at the population level not only depends on interactions between individuals but also on their own intrinsic behavior.
Collapse
Affiliation(s)
- J M Nava-Sedeño
- Universidad Nacional Autónoma de México, Departmento de Matemáticas, Facultad de Ciencias, Circuito Exterior, Ciudad Universitaria, 04510 Ciudad de México, México
| | - R Klages
- Queen Mary University of London, Centre for Complex Systems, School of Mathematical Sciences, Mile End Road, London E1 4NS, United Kingdom
- London Mathematical Laboratory, 8 Margravine Gardens, London W6 8RH, United Kingdom
| | - H Hatzikirou
- Technische Universität Dresden, Center for Information Services and High Performance Computing, Nöthnitzer Straße 46, 01062 Dresden, Germany
- Khalifa University, Mathematics Department, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Francisco J Sevilla
- Universidad Nacional Autónoma de México, Instituto de Física, Apdo. Postal 20-364, 01000, Ciudad de México, México
| | - A Deutsch
- Technische Universität Dresden, Center for Information Services and High Performance Computing, Nöthnitzer Straße 46, 01062 Dresden, Germany
| |
Collapse
|
2
|
Sharma S, Kumar D. Statistical mechanics of an active wheel rolling in circles. Phys Rev E 2025; 111:015424. [PMID: 39972841 DOI: 10.1103/physreve.111.015424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/03/2025] [Indexed: 02/21/2025]
Abstract
Vibrated granular matter constitutes a useful system for studying the physics of active matter. Usually, self-propulsion is induced in grains through suitable asymmetry in the particle design. In this article we show that a symmetrical miniwheel placed on a vibrating plate self-propels along circular trajectories, showing chiral active dynamics. The chiral activity emerges through a sequence of spontaneous symmetry breaking in the particle's kinetics. The fact that isotropy, fore-aft, and chiral symmetries are broken spontaneously leads to distinct statistics, which include a temporal evolution involving stochastic resetting, a non-Gaussian velocity distribution with multiple peaks, broad power-law curvature distribution, and a bounded chirality probability, along with a phase transition from passive achiral to active chiral state as a function of vibration amplitude. Our study establishes the vibrated wheel as a three-state chiral active system that can serve as a model experimental system to study the nonequilibrium statistical mechanics and stochastic thermodynamics of chiral active systems and can inspire novel locomotion strategies in robotics.
Collapse
Affiliation(s)
- Shubham Sharma
- Indian Institute of Technology Delhi, Department of Physics, New Delhi 110016, India
| | - Deepak Kumar
- Indian Institute of Technology Delhi, Department of Physics, New Delhi 110016, India
| |
Collapse
|
3
|
Vaidya JP, Shendruk TN, Thampi SP. Active nematics in corrugated channels. SOFT MATTER 2024; 20:8230-8245. [PMID: 39377100 DOI: 10.1039/d4sm00760c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Active nematic fluids exhibit complex dynamics in both bulk and in simple confining geometries. However, complex confining geometries could have substantial impact on active spontaneous flows. Using multiparticle collision dynamics simulations adapted for active nematic particles, we study the dynamic behaviour of an active nematic fluid confined in a corrugated channel. The transition from a quiescent state to a spontaneous flow state occurs from a weak swirling flow to a strong coherent flow due to the presence of curved-wall induced active flows. We show that the active nematic fluid flows in corrugated channels can be understood in two different ways: (i) as the result of an early or delayed flow transition when compared with that in a flat-walled channel of appropriate width and (ii) boundary-induced active flows in the corrugations providing an effective slip velocity to the coherent flows in the bulk. Thus, our work illustrates the crucial role of corrugations of the confining boundary in dictating the flow transition and flow states of active fluids.
Collapse
Affiliation(s)
- Jaideep P Vaidya
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Tyler N Shendruk
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Sumesh P Thampi
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
4
|
Sadhukhan S, Nandi MK, Pandey S, Paoluzzi M, Dasgupta C, Gov NS, Nandi SK. Motility driven glassy dynamics in confluent epithelial monolayers. SOFT MATTER 2024; 20:6160-6175. [PMID: 39044639 DOI: 10.1039/d4sm00352g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
As wounds heal, embryos develop, cancer spreads, or asthma progresses, the cellular monolayer undergoes a glass transition between solid-like jammed and fluid-like flowing states. During some of these processes, the cells undergo an epithelial-to-mesenchymal transition (EMT): they acquire in-plane polarity and become motile. Thus, how motility drives the glassy dynamics in epithelial systems is critical for the EMT process. However, no analytical framework that is indispensable for deeper insights exists. Here, we develop such a theory inspired by a well-known glass theory. One crucial result of this work is that the confluency affects the effective persistence time-scale of active force, described by its rotational diffusivity, Deffr. Deffr differs from the bare rotational diffusivity, Dr, of the motile force due to cell shape dynamics, which acts to rectify the force dynamics: Deffr is equal to Dr when Dr is small and saturates when Dr is large. We test the theoretical prediction of Deffr and how it affects the relaxation dynamics in our simulations of the active Vertex model. This novel effect of Deffr is crucial to understanding the new and previously published simulation data of active glassy dynamics in epithelial monolayers.
Collapse
Affiliation(s)
- Souvik Sadhukhan
- Tata Institute of Fundamental Research, 36/P Gopanpally Village, Hyderabad-500046, India.
| | - Manoj Kumar Nandi
- Institut National de la Santé et de la Recherche Médicale, Stem Cell and Brain Research Institute, Université Claude Bernard Lyon 1, Bron 69500, France
| | - Satyam Pandey
- Tata Institute of Fundamental Research, 36/P Gopanpally Village, Hyderabad-500046, India.
| | - Matteo Paoluzzi
- Istituto per le Applicazioni del Calcolo del Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Chandan Dasgupta
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
- International Centre for Theoretical Sciences, TIFR, Bangalore 560089, India
| | - Nir S Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Saroj Kumar Nandi
- Tata Institute of Fundamental Research, 36/P Gopanpally Village, Hyderabad-500046, India.
| |
Collapse
|
5
|
Arora P, Sadhukhan S, Nandi SK, Bi D, Sood AK, Ganapathy R. A shape-driven reentrant jamming transition in confluent monolayers of synthetic cell-mimics. Nat Commun 2024; 15:5645. [PMID: 38969629 PMCID: PMC11226658 DOI: 10.1038/s41467-024-49044-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/21/2024] [Indexed: 07/07/2024] Open
Abstract
Many critical biological processes, like wound healing, require densely packed cell monolayers/tissues to transition from a jammed solid-like to a fluid-like state. Although numerical studies anticipate changes in the cell shape alone can lead to unjamming, experimental support for this prediction is not definitive because, in living systems, fluidization due to density changes cannot be ruled out. Additionally, a cell's ability to modulate its motility only compounds difficulties since even in assemblies of rigid active particles, changing the nature of self-propulsion has non-trivial effects on the dynamics. Here, we design and assemble a monolayer of synthetic cell-mimics and examine their collective behaviour. By systematically increasing the persistence time of self-propulsion, we discovered a cell shape-driven, density-independent, re-entrant jamming transition. Notably, we observed cell shape and shape variability were mutually constrained in the confluent limit and followed the same universal scaling as that observed in confluent epithelia. Dynamical heterogeneities, however, did not conform to this scaling, with the fast cells showing suppressed shape variability, which our simulations revealed is due to a transient confinement effect of these cells by their slower neighbors. Our experiments unequivocally establish a morphodynamic link, demonstrating that geometric constraints alone can dictate epithelial jamming/unjamming.
Collapse
Affiliation(s)
- Pragya Arora
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India.
| | - Souvik Sadhukhan
- Tata Institute of Fundamental Research, Hyderabad, 500046, India
| | | | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, MA, 02115, USA
| | - A K Sood
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Rajesh Ganapathy
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India.
- School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India.
| |
Collapse
|
6
|
Ai BQ, Guo RX, Zeng CH, He YF. Rotational inertia-induced glassy transition in chiral particle systems. Phys Rev E 2024; 109:064902. [PMID: 39020947 DOI: 10.1103/physreve.109.064902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/12/2024] [Indexed: 07/20/2024]
Abstract
The dense active matter exhibits characteristics reminiscent of traditional glassy phenomena, yet the role of rotational inertia in glass dynamics remains elusive. In this study, we investigate the glass dynamics of chiral active particles influenced by rotational inertia. Rotational inertia endows exponential memory to particle orientation, restricting its alteration and amplifying the effective persistence time. At lower spinning frequencies, the diffusion coefficient exhibits a peak function relative to rotational inertia for shorter persistence times, while it steadily increases with rotational inertia for longer persistence times. In the realm of high-frequency spinning, the impact of rotational inertia on diffusion behavior becomes more pronounced, resulting in a nonmonotonic and intricate relationship between the diffusion coefficient and rotational inertia. Consequently, the introduction of rotational inertia significantly alters the glassy dynamics of chiral active particles, allowing for the control over transitions between fluid and glassy states by modulating rotational inertia. Moreover, our findings indicate that at a specific spinning temperature, there exists an optimal spinning frequency at which the diffusion coefficient attains its maximum value.
Collapse
Affiliation(s)
- Bao-Quan Ai
- Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), and School of Physics, South China Normal University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510006, China
| | - Rui-Xue Guo
- Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), and School of Physics, South China Normal University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510006, China
| | | | | |
Collapse
|
7
|
Libál A, Stepanov S, Reichhardt C, Reichhardt CJO. Dynamic phases and combing effects for elongated particles moving over quenched disorder. SOFT MATTER 2023; 19:7937-7943. [PMID: 37814545 DOI: 10.1039/d3sm01034a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
We consider a two-dimensional system of elongated particles driven over a landscape containing randomly placed pinning sites. For varied pinning site density, external drive magnitude, and particle elongation, we find a wide variety of dynamic phases, including random structures, stripe or combed phases with nematic order, and clogged states. The different regimes can be identified by examining nematic ordering, cluster size, number of pinned particles, and transverse diffusion. In some regimes we find that the pinning can enhance the particle alignment, producing a nonmonotonic signature in the nematic ordering with a maximum at a particular combination of pinning density and drive. The optimal nematic occurs when a sufficient number of particles can be pinned, generating a local shear and leading to what we call a combing effect. At high drives, the combing effect is reduced when the number of pinned particles decreases. For stronger pinning, the particles form a heterogeneous clustered or clogged state that depins into a fluctuating state with high diffusion.
Collapse
Affiliation(s)
- A Libál
- Mathematics and Computer Science Department, Babes-Bolyai University, Cluj 400084, Romania
| | - S Stepanov
- Physics Department, Babes-Bolyai University, Cluj 400084, Romania
| | - C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| |
Collapse
|
8
|
Debets VE, Janssen LMC. Active glassy dynamics is unaffected by the microscopic details of self-propulsion. J Chem Phys 2022; 157:224902. [DOI: 10.1063/5.0127569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent years have seen a rapid increase of interest in dense active materials, which, in the disordered state, share striking similarities with the conventional passive glass-forming matter. For such passive glassy materials, it is well established (at least in three dimensions) that the details of the microscopic dynamics, e.g., Newtonian or Brownian, do not influence the long-time glassy behavior. Here, we investigate whether this still holds true in the non-equilibrium active case by considering two simple and widely used active particle models, i.e., active Ornstein-Uhlenbeck particles (AOUPs) and active Brownian particles (ABPs). In particular, we seek to gain more insight into the role of the self-propulsion mechanism on the glassy dynamics by deriving a mode-coupling theory (MCT) for thermal AOUPs, which can be directly compared to a recently developed MCT for ABPs. Both theories explicitly take into account the active degrees of freedom. We solve the AOUP- and ABP-MCT equations in two dimensions and demonstrate that both models give almost identical results for the intermediate scattering function over a large variety of control parameters (packing fractions, active speeds, and persistence times). We also confirm this theoretical equivalence between the different self-propulsion mechanisms numerically via simulations of a polydisperse mixture of active quasi-hard spheres, thereby establishing that, at least for these model systems, the microscopic details of self-propulsion do not alter the active glassy behavior.
Collapse
Affiliation(s)
- Vincent E. Debets
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Liesbeth M. C. Janssen
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
9
|
McCormick K. Defects Help 3D-Printed Particles Keep on Swirling. PHYSICS 2022. [DOI: 10.1103/physics.15.s57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|