1
|
Ecker C, Gorda T, Kurkela A, Rezzolla L. Constraining the equation of state in neutron-star cores via the long-ringdown signal. Nat Commun 2025; 16:1320. [PMID: 39900914 PMCID: PMC11790964 DOI: 10.1038/s41467-025-56500-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 01/20/2025] [Indexed: 02/05/2025] Open
Abstract
Multimessenger signals from binary neutron star (BNS) mergers are promising tools to infer the properties of nuclear matter at densities inaccessible to laboratory experiments. Gravitational waves (GWs) from BNS merger remnants can constrain the neutron-star equation of state (EOS) complementing constraints from late inspiral, direct mass-radius measurements, and ab-initio calculations. We perform a series of general-relativistic simulations of BNS systems with EOSs constructed to comprehensively cover the high-density regime. We identify a tight correlation between the ratio of the energy and angular-momentum losses in the late-time portion of the post-merger signal, called the long ringdown, and the EOS at the highest pressures and densities in neutron-star cores. Applying this correlation to post-merger GW signals significantly reduces EOS uncertainty at densities several times the nuclear saturation density, where no direct constraints are currently available. Hence, the long ringdown can provide stringent constraints on material properties of neutron stars cores.
Collapse
Affiliation(s)
- Christian Ecker
- Institut für Theoretische Physik, Goethe Universität, Frankfurt am Main, Germany.
| | - Tyler Gorda
- Institut für Theoretische Physik, Goethe Universität, Frankfurt am Main, Germany.
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany.
- Department of Physics, Technische Universität Darmstadt, Darmstadt, Germany.
| | - Aleksi Kurkela
- Faculty of Science and Technology, University of Stavanger, Stavanger, Norway.
| | - Luciano Rezzolla
- Institut für Theoretische Physik, Goethe Universität, Frankfurt am Main, Germany.
- Frankfurt Institute for Advanced Studies, Frankfurt, Germany.
- School of Mathematics Trinity College, Dublin, Ireland.
| |
Collapse
|
2
|
Cruz Rojas J, Gorda T, Hoyos C, Jokela N, Järvinen M, Kurkela A, Paatelainen R, Säppi S, Vuorinen A. Estimate for the Bulk Viscosity of Strongly Coupled Quark Matter Using Perturbative QCD and Holography. PHYSICAL REVIEW LETTERS 2024; 133:071901. [PMID: 39213557 DOI: 10.1103/physrevlett.133.071901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/22/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
Modern hydrodynamic simulations of core-collapse supernovae and neutron-star mergers require knowledge not only of the equilibrium properties of strongly interacting matter, but also of the system's response to perturbations, encoded in various transport coefficients. Using perturbative and holographic tools, we derive here an improved weak-coupling and a new strong-coupling result for the most important transport coefficient of unpaired quark matter, its bulk viscosity. These results are combined in a simple analytic pocket formula for the quantity that is rooted in perturbative quantum chromodynamics at high densities but takes into account nonperturbative holographic input at neutron-star densities, where the system is strongly coupled. This expression can be used in the modeling of unpaired quark matter at astrophysically relevant temperatures and densities.
Collapse
Affiliation(s)
| | - Tyler Gorda
- Institut für Theoretische Physik, Goethe Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
- Technische Universität Darmstadt, Department of Physics, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - Carlos Hoyos
- Departamento de Física and Instituto de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Universidad de Oviedo, c/ Leopoldo Calvo Sotelo 18, ES-33007 Oviedo, Spain
| | | | | | | | | | | | | |
Collapse
|
3
|
Kurkela A, Rajagopal K, Steinhorst R. Astrophysical Equation-of-State Constraints on the Color-Superconducting Gap. PHYSICAL REVIEW LETTERS 2024; 132:262701. [PMID: 38996309 DOI: 10.1103/physrevlett.132.262701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/29/2024] [Accepted: 05/17/2024] [Indexed: 07/14/2024]
Abstract
We demonstrate that astrophysical constraints on the dense-matter equation of state place an upper bound on the color-superconducting gap in dense matter above the transition from nuclear matter to quark matter. Pairing effects in the color-flavor locked quark matter phase increase the pressure at high density, and if this effect is sufficiently large then the requirements of causality and mechanical stability make it impossible to reach such a pressure in a way that is consistent with what is known at lower densities. The intermediate-density equation of state is inferred by considering extensions of chiral effective field theory to neutron star densities, and conditioning these using current astrophysical observations of neutron star radius, maximum mass, and tidal deformability (PSR J0348+0432, PSR J1624-2230, PSR J0740+6620, GW170817). At baryon number chemical potential μ=2.6 GeV we find a 95% upper limit on the color-flavor locked pairing gap Δ of 457 MeV using overly conservative assumptions and 216 MeV with more reasonable assumptions. This constraint may be strengthened by future astrophysical measurements as well as by future advances in high-density QCD calculations.
Collapse
|
4
|
Pang PTH, Dietrich T, Coughlin MW, Bulla M, Tews I, Almualla M, Barna T, Kiendrebeogo RW, Kunert N, Mansingh G, Reed B, Sravan N, Toivonen A, Antier S, VandenBerg RO, Heinzel J, Nedora V, Salehi P, Sharma R, Somasundaram R, Van Den Broeck C. An updated nuclear-physics and multi-messenger astrophysics framework for binary neutron star mergers. Nat Commun 2023; 14:8352. [PMID: 38123551 PMCID: PMC10733434 DOI: 10.1038/s41467-023-43932-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
The multi-messenger detection of the gravitational-wave signal GW170817, the corresponding kilonova AT2017gfo and the short gamma-ray burst GRB170817A, as well as the observed afterglow has delivered a scientific breakthrough. For an accurate interpretation of all these different messengers, one requires robust theoretical models that describe the emitted gravitational-wave, the electromagnetic emission, and dense matter reliably. In addition, one needs efficient and accurate computational tools to ensure a correct cross-correlation between the models and the observational data. For this purpose, we have developed the Nuclear-physics and Multi-Messenger Astrophysics framework NMMA. The code allows incorporation of nuclear-physics constraints at low densities as well as X-ray and radio observations of isolated neutron stars. In previous works, the NMMA code has allowed us to constrain the equation of state of supranuclear dense matter, to measure the Hubble constant, and to compare dense-matter physics probed in neutron-star mergers and in heavy-ion collisions, and to classify electromagnetic observations and perform model selection. Here, we show an extension of the NMMA code as a first attempt of analyzing the gravitational-wave signal, the kilonova, and the gamma-ray burst afterglow simultaneously. Incorporating all available information, we estimate the radius of a 1.4M⊙ neutron star to be [Formula: see text] km.
Collapse
Affiliation(s)
- Peter T H Pang
- Nikhef, Science Park 105, 1098 XG, Amsterdam, The Netherlands
- Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, Princetonplein 1, 3584 CC, Utrecht, The Netherlands
| | - Tim Dietrich
- Institut für Physik und Astronomie, Universität Potsdam, Haus 28, Karl-Liebknecht-Str. 24/25, 14476, Potsdam, Germany.
- Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, 14476, Potsdam, Germany.
| | - Michael W Coughlin
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mattia Bulla
- The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-106 91, Stockholm, Sweden
- Department of Physics and Earth Science, University of Ferrara, Via Saragat 1, I-44122, Ferrara, Italy
- INFN, Sezione di Ferrara, Via Saragat 1, I-44122, Ferrara, Italy
- INAF, Osservatorio Astronomico d'Abruzzo, Via Mentore Maggini snc, 64100, Teramo, Italy
| | - Ingo Tews
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Mouza Almualla
- Department of Physics, American University of Sharjah, PO Box 26666, Sharjah, UAE
| | - Tyler Barna
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ramodgwendé Weizmann Kiendrebeogo
- Laboratoire de Physique et de Chimie de l'Environnement, Université Joseph KI-ZERBO, Ouagadougou, Burkina Faso
- Observatoire de la Côte d'Azur, Université Côte d'Azur, CNRS, 96 Boulevard de l'Observatoire, F06304, Nice Cedex 4, France
| | - Nina Kunert
- Institut für Physik und Astronomie, Universität Potsdam, Haus 28, Karl-Liebknecht-Str. 24/25, 14476, Potsdam, Germany
| | - Gargi Mansingh
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Physics, American University, Washington, DC, 20016, USA
| | - Brandon Reed
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Physics and Astronomy, University of Minnesota-Duluth, Duluth, MN, 55812, USA
| | - Niharika Sravan
- Department of Physics, Drexel University, Philadelphia, PA, 19104, USA
| | - Andrew Toivonen
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Sarah Antier
- Observatoire de la Côte d'Azur, Université Côte d'Azur, CNRS, 96 Boulevard de l'Observatoire, F06304, Nice Cedex 4, France
| | - Robert O VandenBerg
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jack Heinzel
- Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Vsevolod Nedora
- Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Pouyan Salehi
- Institut für Physik und Astronomie, Universität Potsdam, Haus 28, Karl-Liebknecht-Str. 24/25, 14476, Potsdam, Germany
| | - Ritwik Sharma
- Department of Physics, Deshbandhu College, University of Delhi, New Delhi, India
| | - Rahul Somasundaram
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Université Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, UMR 5822, F-69622, Villeurbanne, France
- Department of Physics, Syracuse University, Syracuse, NY, 13244, USA
| | - Chris Van Den Broeck
- Nikhef, Science Park 105, 1098 XG, Amsterdam, The Netherlands
- Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, Princetonplein 1, 3584 CC, Utrecht, The Netherlands
| |
Collapse
|
5
|
Annala E, Gorda T, Hirvonen J, Komoltsev O, Kurkela A, Nättilä J, Vuorinen A. Strongly interacting matter exhibits deconfined behavior in massive neutron stars. Nat Commun 2023; 14:8451. [PMID: 38114461 PMCID: PMC10730725 DOI: 10.1038/s41467-023-44051-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023] Open
Abstract
Neutron-star cores contain matter at the highest densities in our Universe. This highly compressed matter may undergo a phase transition where nuclear matter melts into deconfined quark matter, liberating its constituent quarks and gluons. Quark matter exhibits an approximate conformal symmetry, predicting a specific form for its equation of state (EoS), but it is currently unknown whether the transition takes place inside at least some physical neutron stars. Here, we quantify this likelihood by combining information from astrophysical observations and theoretical calculations. Using Bayesian inference, we demonstrate that in the cores of maximally massive stars, the EoS is consistent with quark matter. We do this by establishing approximate conformal symmetry restoration with high credence at the highest densities probed and demonstrating that the number of active degrees of freedom is consistent with deconfined matter. The remaining likelihood is observed to correspond to EoSs exhibiting phase-transition-like behavior, treated as arbitrarily rapid crossovers in our framework.
Collapse
Affiliation(s)
- Eemeli Annala
- Department of Physics and Helsinki Institute of Physics, University of Helsinki, P.O. Box 64, FI-00014, University of Helsinki, Finland
| | - Tyler Gorda
- Technische Universität Darmstadt, Department of Physics, 64289, Darmstadt, Germany.
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291, Darmstadt, Germany.
| | - Joonas Hirvonen
- Department of Physics and Helsinki Institute of Physics, University of Helsinki, P.O. Box 64, FI-00014, University of Helsinki, Finland.
| | - Oleg Komoltsev
- Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway.
| | - Aleksi Kurkela
- Faculty of Science and Technology, University of Stavanger, 4036, Stavanger, Norway.
| | - Joonas Nättilä
- Center for Computational Astrophysics, Flatiron Institute, 162 Fifth Avenue, New York, NY, 10010, USA.
- Physics Department and Columbia Astrophysics Laboratory, Columbia University, 538 West 120th Street, New York, NY, 10027, USA.
| | - Aleksi Vuorinen
- Department of Physics and Helsinki Institute of Physics, University of Helsinki, P.O. Box 64, FI-00014, University of Helsinki, Finland.
| |
Collapse
|
6
|
Gorda T, Paatelainen R, Säppi S, Seppänen K. Equation of State of Cold Quark Matter to O(α_{s}^{3}lnα_{s}). PHYSICAL REVIEW LETTERS 2023; 131:181902. [PMID: 37977603 DOI: 10.1103/physrevlett.131.181902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 11/19/2023]
Abstract
Accurately understanding the equation of state (EOS) of high-density, zero-temperature quark matter plays an essential role in constraining the behavior of dense strongly interacting matter inside the cores of neutron stars. In this Letter, we study the weak-coupling expansion of the EOS of cold quark matter and derive the complete, gauge-invariant contributions from the long-wavelength, dynamically screened gluonic sector at next-to-next-to-next-to-leading order (N3LO) in the strong coupling constant α_{s}. This elevates the EOS result to the O(α_{s}^{3}lnα_{s}) level, leaving only one unknown constant from the unscreened sector at N3LO, and places it on par with its high-temperature counterpart from 2003.
Collapse
Affiliation(s)
- Tyler Gorda
- Technische Universität Darmstadt, Department of Physics, 64289 Darmstadt, Germany
- ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
| | - Risto Paatelainen
- Department of Physics and Helsinki Institute of Physics, University of Helsinki, P.O. Box 64, FI-00014, Finland
| | - Saga Säppi
- TUM Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Excellence Cluster ORIGINS, Boltzmannstrasse 2, 85748 Garching, Germany
| | - Kaapo Seppänen
- Department of Physics and Helsinki Institute of Physics, University of Helsinki, P.O. Box 64, FI-00014, Finland
| |
Collapse
|
7
|
Han MZ, Huang YJ, Tang SP, Fan YZ. Plausible presence of new state in neutron stars with masses above 0.98M TOV. Sci Bull (Beijing) 2023; 68:913-919. [PMID: 37080849 DOI: 10.1016/j.scib.2023.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023]
Abstract
We investigate the neutron star (NS) equation of state (EOS) by incorporating multi-messenger data of GW170817, PSR J0030 + 0451, PSR J0740 + 6620, and state-of-the-art theoretical progresses, including the information from chiral effective field theory (χEFT) and perturbative quantum chromodynamics (pQCD) calculation. Taking advantage of the various structures sampling by a single-layer feed-forward neural network model embedded in the Bayesian nonparametric inference, the structure of NS matter's sound speed cs is explored in a model-agnostic way. It is found that a peak structure is common in the cs2 posterior, locating at 2.4-4.8ρsat (nuclear saturation density) and cs2 exceeds c2/3 at 90% credibility. The non-monotonic behavior suggests evidence of the state deviating from the hadronic matter inside the very massive NSs. Assuming the new/exotic state is featured as it is softer than typical hadronic models or even with hyperons, we find that a sizable (⩾10-3M⊙) exotic core, likely made of quark matter, is plausible for the NS with a gravitational mass above about 0.98MTOV, where MTOV represents the maximum gravitational mass of a non-rotating cold NS. The inferred MTOV=2.18-0.13+0.27M⊙ (90% credibility) is well consistent with the value of 2.17-0.12+0.15M⊙ estimated independently with GW170817/GRB 170817A/AT2017gfo assuming a temporary supramassive NS remnant formed after the merger. PSR J0740 + 6620, the most massive NS detected so far, may host a sizable exotic core with a probability of ≈0.36.
Collapse
Affiliation(s)
- Ming-Zhe Han
- Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, China; School of Astronomy and Space Science, University of Science and Technology of China, Hefei 230026, China
| | - Yong-Jia Huang
- Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, China; School of Astronomy and Space Science, University of Science and Technology of China, Hefei 230026, China; RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, Wako 351-0198, Japan
| | - Shao-Peng Tang
- Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, China
| | - Yi-Zhong Fan
- Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, China; School of Astronomy and Space Science, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
8
|
Fujimoto Y, Fukushima K, Hotokezaka K, Kyutoku K. Gravitational Wave Signal for Quark Matter with Realistic Phase Transition. PHYSICAL REVIEW LETTERS 2023; 130:091404. [PMID: 36930907 DOI: 10.1103/physrevlett.130.091404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 12/21/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The cores of neutron stars (NSs) near the maximum mass can realize a transitional change to quark matter (QM). Gravitational waves from binary NS mergers are expected to convey information about the equation of state (EOS) sensitive to the QM transition. Here, we present the first results of gravitational wave simulation with the realistic EOS that is consistent with ab initio approaches of χEFT and pQCD and is assumed to go through smooth crossover. We compare them to results obtained with another EOS with a first-order hadron-quark phase transition. Our results suggest that early collapse to a black hole in the post-merger stage after NS merger robustly signifies softening of the EOS associated with the QM onset in the crossover scenario. The nature of the hadron-quark phase transition can be further constrained by the condition that electromagnetic counterparts should be energized by the material left outside the remnant black hole.
Collapse
Affiliation(s)
- Yuki Fujimoto
- Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan
- Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195, USA
| | - Kenji Fukushima
- Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kenta Hotokezaka
- Research Center for the Early Universe (RESCEU), The University of Tokyo, Tokyo 113-0033, Japan
| | - Koutarou Kyutoku
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
- Center for Gravitational Physics and Quantum Information, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
- Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, Saitama 351-0198, Japan
| |
Collapse
|
9
|
Kurkela A. Thoughts about the utility of perturbative QCD in the cores of neutron stars – contribution to a roundtable discussion on neutron stars and QCD. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202227407008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In this contribution, I discuss the utility that perturbative QCD offers in studying the matter in the cores of neutron stars. I discuss the reasons why perturbative QCD can constrain the equation of state at densities far below the densities where we can perform controlled calculations. I discuss how perturbative QCD can inform nuclear modelling of neutron stars and how it influences equation-of-state inference. And finally, I discuss the implications to the QCD phase diagram and argue that interesting features in the equation of state revealed by the QCD input may be used to argue for the existence of quark-matter cores in most massive neutron stars.
Collapse
|
10
|
Mathews GJ, Kedia A, Kim HI, Suh IS. Neutron Star Mergers and the Quark Matter Equation of State. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202227401013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
As neutron stars merge they can approach very high nuclear density. Here, we summarized recent results for the evolution and gravitational wave emission from binary-neutron star mergers using a a variety of nuclear equations of state with and without a crossover transition to quark matter. We discuss how the late time gravitational wave emission from binary neutron star mergers may possibly reveal the existence of a crossover transition to quark matter.
Collapse
|
11
|
Ivanytskyi O, Blaschke D, Fischer T, Bauswein A. Early deconfinement of asymptotically conformal color-superconducting quark matter in neutron stars. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202227407010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We present a relativistic density functional approach to color superconducting quark matter that mimics quark confinement by a fast growth of the quasiparticle selfenergy in the confining region. The approach is shown to be equivalent to a chiral model of quark matter with medium dependent couplings. While the (pseudo)scalar sector of the model is fitted to the vacuum phenomenology of quantum chromodynamics, the strength of interaction in the vector and diquark channels is varied in order to provide the best agreement with the observational constraints on the mass-radius relation and tidal deformability of neutron stars modelled with our approach. In order to recover the conformal behavior of quark matter at asymptotically high densities we introduce a medium dependence of the vector and diquark couplings motivated by the non-perturbative gluon exchange. Our analysis signals that the onset of deconfinement to color superconducting quark matter is likely to occur in neutron stars with masses below 1.0 M⊙.
Collapse
|