1
|
Yu AZ, Zhang W, Chen W, Liu Y, Ma CQ, Yang JC, Lu YQ. Spatiotemporal Moiré lattice light fields. NANOPHOTONICS (BERLIN, GERMANY) 2025; 14:707-714. [PMID: 40182781 PMCID: PMC11964129 DOI: 10.1515/nanoph-2024-0562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/07/2024] [Indexed: 04/05/2025]
Abstract
Joint space-time modulation of light fields has recently garnered intense attention for enabling precise control over both spatial and temporal characteristics of light, leading to the creation of space-time beams with unique properties, such as diffraction-free propagation and transverse orbital angular momentum. Here, we theoretically propose and experimentally demonstrate spatiotemporal Moiré lattice light fields by controlling the discrete rotational symmetry of a pulse's spatiotemporal spectrum. Using a 4f pulse shaper and an x - ω modulation strategy, we generate tunable spatiotemporal Moiré patterns with varying sublattice sizes and confirm their diffraction-free behavior in time-averaged intensities. Additionally, we demonstrate spatiotemporal Moiré lattices carrying transverse orbital angular momentum. These findings provide a novel platform for studying spatiotemporal light-matter interactions and may open new possibilities for applications in other wave-based systems, such as acoustics and electron waves.
Collapse
Affiliation(s)
- An-Zhuo Yu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing210023, China
| | - Wang Zhang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing210023, China
| | - Wei Chen
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing210023, China
| | - Yuan Liu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing210023, China
| | - Chao-Qun Ma
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing210023, China
| | - Jia-Chen Yang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing210023, China
| | - Yan-Qing Lu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing210023, China
| |
Collapse
|
2
|
Zhang Y, Hang C, Malomed BA, Huang G. Stable three-dimensional vortex solitons of high topological charge in a Rydberg-dressed Bose-Einstein condensate with spin-orbit coupling. Phys Rev E 2025; 111:024205. [PMID: 40103118 DOI: 10.1103/physreve.111.024205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 01/14/2025] [Indexed: 03/20/2025]
Abstract
Stable vortex solitons (VSs) are objects of great interest for fundamental studies and various applications, including particle trapping, microscopy, data encoding, and matter-wave gyroscopes. However, three-dimensional (3D) VSs with high topological charges, supported by self-attractive nonlinearities, are unstable against fragmentation, which eventually leads to internal blowup (supercritical collapse) of the fragments. Here, we propose a scheme for realizing stable 3D VSs with topological charges up to 5 and 6 in the two components of a binary, Rydberg-dressed Bose-Einstein condensate with spin-orbit coupling (SOC). We show that, if the SOC strength exceeds a critical value, the rotational symmetry of the VSs in the transverse plane gets broken, resulting in a separation of the two components. Nevertheless, the VSs with the broken symmetry remain stable. The VS stability domains are identified in the system's parameter space. Moreover, application of torque to the stable VSs sets them in the state of robust gyroscopic precession.
Collapse
Affiliation(s)
- Yanchao Zhang
- East China Normal University, State Key Laboratory of Precision Spectroscopy, Shanghai 200241, China
| | - Chao Hang
- East China Normal University, State Key Laboratory of Precision Spectroscopy, Shanghai 200241, China
- New York University at Shanghai, NYU-ECNU Institute of Physics, Shanghai 200062, China
- Shanxi University, Collaborative Innovation Center of Extreme Optics, Taiyuan, Shanxi 030006, China
| | - Boris A Malomed
- Tel Aviv University, Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, and Center for Light-Matter Interaction, 6997801 Tel Aviv, Israel
- Universidad de Tarapacá, Instituto de Alta Investigación, Casilla 7D, Arica, Chile
| | - Guoxiang Huang
- East China Normal University, State Key Laboratory of Precision Spectroscopy, Shanghai 200241, China
- New York University at Shanghai, NYU-ECNU Institute of Physics, Shanghai 200062, China
- Shanxi University, Collaborative Innovation Center of Extreme Optics, Taiyuan, Shanxi 030006, China
| |
Collapse
|
3
|
Barrat J, Tzortzakakis AF, Niu M, Zhou X, Paschos GG, Petrosyan D, Savvidis PG. Qubit analog with polariton superfluid in an annular trap. SCIENCE ADVANCES 2024; 10:eado4042. [PMID: 39441935 PMCID: PMC11498216 DOI: 10.1126/sciadv.ado4042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024]
Abstract
We report on the experimental realization and characterization of a qubit analog with semiconductor exciton-polaritons. In our system, a polaritonic condensate is confined by a spatially patterned pump laser in an annular trap that supports energy-degenerate vortex states of the polariton superfluid. Using temporal interference measurements, we observe coherent oscillations between a pair of counter-circulating vortex states coupled by elastic scattering of polaritons off the laser-imprinted potential. The qubit basis states correspond to the symmetric and antisymmetric superpositions of the two vortex states. By engineering the potential, we tune the coupling and coherent oscillations between the two circulating current states, control the energies of the qubit basis states, and initialize the qubit in the desired state. The dynamics of the system is accurately reproduced by our theoretical two-state model, and we discuss potential avenues to implement quantum gates and algorithms with polaritonic qubits analogous to quantum computation with standard qubits.
Collapse
Affiliation(s)
- Joris Barrat
- Department of Physics, Fudan University, Shanghai 200433, China
- Key Laboratory for Quantum Materials of Zhejiang Province, Physics Department, Westlake University, 18 Shilongshan Rd, Hangzhou 310024, Zhejiang, China
- Institute of Natural Sciences, WIAS, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Andreas F. Tzortzakakis
- Institute of Electronic Structure and Laser, FORTH, 70013 Heraklion, Crete, Greece
- Department of Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Meng Niu
- Department of Physics, Fudan University, Shanghai 200433, China
- Key Laboratory for Quantum Materials of Zhejiang Province, Physics Department, Westlake University, 18 Shilongshan Rd, Hangzhou 310024, Zhejiang, China
- Institute of Natural Sciences, WIAS, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Xiaoqing Zhou
- Key Laboratory for Quantum Materials of Zhejiang Province, Physics Department, Westlake University, 18 Shilongshan Rd, Hangzhou 310024, Zhejiang, China
- Institute of Natural Sciences, WIAS, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Giannis G. Paschos
- Key Laboratory for Quantum Materials of Zhejiang Province, Physics Department, Westlake University, 18 Shilongshan Rd, Hangzhou 310024, Zhejiang, China
- Institute of Natural Sciences, WIAS, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - David Petrosyan
- Institute of Electronic Structure and Laser, FORTH, 70013 Heraklion, Crete, Greece
- A. Alikhanyan National Science Laboratory (YerPhI), 0036 Yerevan, Armenia
| | - Pavlos G. Savvidis
- Key Laboratory for Quantum Materials of Zhejiang Province, Physics Department, Westlake University, 18 Shilongshan Rd, Hangzhou 310024, Zhejiang, China
- Institute of Natural Sciences, WIAS, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
- Institute of Electronic Structure and Laser, FORTH, 70013 Heraklion, Crete, Greece
| |
Collapse
|
4
|
Alyatkin S, Milián C, Kartashov YV, Sitnik KA, Gnusov I, Töpfer JD, Sigurðsson H, Lagoudakis PG. Antiferromagnetic Ising model in a triangular vortex lattice of quantum fluids of light. SCIENCE ADVANCES 2024; 10:eadj1589. [PMID: 39178267 PMCID: PMC11343025 DOI: 10.1126/sciadv.adj1589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/22/2024] [Indexed: 08/25/2024]
Abstract
Vortices are topologically distinctive objects appearing as phase twists in coherent fields of optical beams and Bose-Einstein condensates. Structured networks and artificial lattices of coupled vortices could offer a powerful platform to study and simulate interaction mechanisms between constituents of condensed matter systems, such as antiferromagnetic interactions, by replacement of spin angular momentum with orbital angular momentum. Here, we realize such a platform using a macroscopic quantum fluid of light based on exciton-polariton condensates. We imprint all-optical hexagonal lattice that results into a triangular vortex lattice, with each cell having a vortex of charge l = ±1. We reveal that pairs of coupled condensates spontaneously arrange their orbital angular momentum antiparallel, implying a form of artificial orbital "antiferromagnetism." We discover that correlation exists between the emergent vortex patterns in triangular condensate lattices and the low-energy solutions of the corresponding antiferromagnetic Ising system. Our study offers a path toward spontaneously ordered vortex arrays with nearly arbitrary configurations and controlled couplings.
Collapse
Affiliation(s)
- Sergey Alyatkin
- Hybrid Photonics Laboratory, Skolkovo Institute of Science and Technology, Moscow, Territory of innovation center “Skolkovo,” Bolshoy Boulevard 30, bld. 1, Moscow 121205, Russia
| | - Carles Milián
- Institut Universitari de Matemàtica Pura i Aplicada, Universitat Politècnica de València, 46022 València, Spain
| | - Yaroslav V. Kartashov
- Institute of Spectroscopy of Russian Academy of Sciences, Fizicheskaya Str., 5, Troitsk, Moscow 108840, Russia
| | - Kirill A. Sitnik
- Hybrid Photonics Laboratory, Skolkovo Institute of Science and Technology, Moscow, Territory of innovation center “Skolkovo,” Bolshoy Boulevard 30, bld. 1, Moscow 121205, Russia
| | - Ivan Gnusov
- Hybrid Photonics Laboratory, Skolkovo Institute of Science and Technology, Moscow, Territory of innovation center “Skolkovo,” Bolshoy Boulevard 30, bld. 1, Moscow 121205, Russia
| | - Julian D. Töpfer
- Hybrid Photonics Laboratory, Skolkovo Institute of Science and Technology, Moscow, Territory of innovation center “Skolkovo,” Bolshoy Boulevard 30, bld. 1, Moscow 121205, Russia
| | - Helgi Sigurðsson
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland
- Science Institute, University of Iceland, Dunhagi 3, IS-107, Reykjavik, Iceland
| | - Pavlos G. Lagoudakis
- Hybrid Photonics Laboratory, Skolkovo Institute of Science and Technology, Moscow, Territory of innovation center “Skolkovo,” Bolshoy Boulevard 30, bld. 1, Moscow 121205, Russia
| |
Collapse
|
5
|
Barrat J, Cherbunin R, Sedov E, Aladinskaia E, Liubomirov A, Litvyak V, Petrov M, Zhou X, Hatzopoulos Z, Kavokin A, Savvidis PG. Stochastic circular persistent currents of exciton polaritons. Sci Rep 2024; 14:12953. [PMID: 38839986 PMCID: PMC11153513 DOI: 10.1038/s41598-024-63725-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/30/2024] [Indexed: 06/07/2024] Open
Abstract
We monitor the orbital degree of freedom of exciton-polariton condensates confined within an optical trap and unveil the stochastic switching of persistent annular polariton currents under pulse-periodic excitation. Within an elliptical trap, the low-lying in energy polariton current states manifest as a two-petaled density distribution with a swirling phase. In the stochastic regime, the density distribution, averaged over multiple excitation pulses, becomes homogenized in the azimuthal direction. Meanwhile, the weighted phase, extracted from interference experiments, exhibits two compensatory jumps when varied around the center of the trap. Introducing a supplemental control optical pulse to break the reciprocity of the system enables the transition from a stochastic to a deterministic regime, allowing for controlled polariton circulation direction.
Collapse
Affiliation(s)
- J Barrat
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China
| | - Roman Cherbunin
- Spin Optics Laboratory, St. Petersburg State University, Ulyanovskaya 1, St. Petersburg, 198504, Russia
| | - Evgeny Sedov
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China.
- Spin Optics Laboratory, St. Petersburg State University, Ulyanovskaya 1, St. Petersburg, 198504, Russia.
- Stoletov Vladimir State University, Gorky str. 87, Vladimir, 600000, Russia.
| | - Ekaterina Aladinskaia
- Spin Optics Laboratory, St. Petersburg State University, Ulyanovskaya 1, St. Petersburg, 198504, Russia
| | - Alexey Liubomirov
- Spin Optics Laboratory, St. Petersburg State University, Ulyanovskaya 1, St. Petersburg, 198504, Russia
| | - Valentina Litvyak
- Spin Optics Laboratory, St. Petersburg State University, Ulyanovskaya 1, St. Petersburg, 198504, Russia
| | - Mikhail Petrov
- Spin Optics Laboratory, St. Petersburg State University, Ulyanovskaya 1, St. Petersburg, 198504, Russia
| | - Xiaoqing Zhou
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China
| | - Z Hatzopoulos
- FORTH-IESL, P.O. Box 1527, 71110, Heraklion, Crete, Greece
| | - Alexey Kavokin
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China
- Spin Optics Laboratory, St. Petersburg State University, Ulyanovskaya 1, St. Petersburg, 198504, Russia
- Abrikosov Center for Theoretical Physics, Moscow Institute of Physics and Technology, Institutskiy per. 9, Moscow Region, Dolgoprudnyi, 141701, Russia
| | - P G Savvidis
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China
- FORTH-IESL, P.O. Box 1527, 71110, Heraklion, Crete, Greece
- Department of Materials Science and Technology, University of Crete, P.O. Box 2208, 71003, Heraklion, Crete, Greece
| |
Collapse
|
6
|
Li C, Kartashov YV. Stable Vortex Solitons Sustained by Localized Gain in a Cubic Medium. PHYSICAL REVIEW LETTERS 2024; 132:213802. [PMID: 38856259 DOI: 10.1103/physrevlett.132.213802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/19/2024] [Accepted: 04/22/2024] [Indexed: 06/11/2024]
Abstract
We propose a simple dissipative system with purely cubic defocusing nonlinearity and nonuniform linear gain that can support stable localized dissipative vortex solitons with high topological charges without the utilization of competing nonlinearities and nonlinear gain or losses. Localization of such solitons is achieved due to an intriguing mechanism when defocusing nonlinearity stimulates energy flow from the ringlike region with linear gain to the periphery of the medium where energy is absorbed due to linear background losses. Vortex solitons bifurcate from linear gain-guided vortical modes with eigenvalues depending on topological charges that become purely real only at specific gain amplitudes. Increasing gain amplitude leads to transverse expansion of vortex solitons, but simultaneously it usually also leads to stability enhancement. Increasing background losses allows creation of stable vortex solitons with high topological charges that are usually prone to instabilities in conservative and dissipative systems. Propagation of the perturbed unstable vortex solitons in this system reveals unusual dynamical regimes, when instead of decay or breakup, the initial state transforms into stable vortex solitons with lower or sometimes even with higher topological charge. Our results suggest an efficient mechanism for the formation of nonlinear excited vortex-carrying states with suppressed destructive azimuthal modulational instabilities in a simple setting relevant to a wide class of systems, including polaritonic systems, structured microcavities, and lasers.
Collapse
Affiliation(s)
- Chunyan Li
- School of Physics, Xidian University, Xi'an 710071, China
- Institute of Spectroscopy, Russian Academy of Sciences, 108840 Troitsk, Moscow, Russia
| | - Yaroslav V Kartashov
- Institute of Spectroscopy, Russian Academy of Sciences, 108840 Troitsk, Moscow, Russia
| |
Collapse
|
7
|
Ricco LS, Shelykh IA, Kavokin A. Qubit gate operations in elliptically trapped polariton condensates. Sci Rep 2024; 14:4211. [PMID: 38378989 PMCID: PMC10879284 DOI: 10.1038/s41598-024-54543-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/14/2024] [Indexed: 02/22/2024] Open
Abstract
We consider bosonic condensates of exciton-polaritons optically confined in elliptical traps. A superposition of two non-degenerated p-type states of the condensate oriented along the two main axes of the trap is represented by a point on a Bloch sphere, being considered as an optically tunable qubit. We describe a set of universal single-qubit gates resulting in a controllable shift of the Bloch vector by means of an auxiliary laser beam. Moreover, we consider interaction mechanisms between two neighboring traps that enable designing two-qubit operations such as CPHASE and CNOT gates. Both the single- and two-qubit gates are analyzed in the presence of error sources in the context of polariton traps, such as pure dephasing and spontaneous relaxation mechanisms, leading to a fidelity reduction of the final qubit states and quantum concurrence, as well as the increase of Von Neumann entropy. We also discuss the applicability of our qubit proposal in the context of DiVincenzo's criteria for the realization of local quantum computing processes. Altogether, the developed set of quantum operations would pave the way to the realization of a variety of quantum algorithms in a planar microcavity with a set of optically induced elliptical traps.
Collapse
Affiliation(s)
- Luciano S Ricco
- Science Institute, University of Iceland, Dunhagi-3, IS-107, Reykjavik, Iceland.
| | - Ivan A Shelykh
- Science Institute, University of Iceland, Dunhagi-3, IS-107, Reykjavik, Iceland
- Russian Quantum Center, Skolkovo IC, Bolshoy Bulvar 30 bld. 1, Moscow, 121205, Russia
- Abrikosov Center for Theoretical Physics, MIPT, Dolgoprudnyi, Moscow Region, 141707, Russia
| | - Alexey Kavokin
- Key Laboratory for Quantum Materials of Zhejiang Province, School of Science, Westlake University, Hangzhou, 310024, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China.
- Spin Optics Laboratory, St. Petersburg State University, St. Petersburg, 198504, Russia.
| |
Collapse
|
8
|
Gong J, Li Q, Zeng S, Wang J. Non-Gaussian anomalous diffusion of optical vortices. Phys Rev E 2024; 109:024111. [PMID: 38491579 DOI: 10.1103/physreve.109.024111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/15/2023] [Indexed: 03/18/2024]
Abstract
Anomalous diffusion of different particlelike entities, the deviation from typical Brownian motion, is ubiquitous in complex physical and biological systems. While optical vortices move randomly in evolving speckle fields, optical vortices have only been observed to exhibit pure Brownian motion in random speckle fields. Here we present direct experimental evidence of the anomalous diffusion of optical vortices in temporally varying speckle patterns from multiple-scattering viscoelastic media. Moreover, we observe two characteristic features, i.e., the self-similarity and the antipersistent correlation of the optical vortex motion, indicating that the mechanism of the observed subdiffusion of optical vortices can only be attributed to fractional Brownian motion (FBM). We further demonstrate that the vortex displacements exhibit a non-Gaussian heavy-tailed distribution. Additionally, we modulate the extent of subdiffusion, such as diffusive scaling exponents, and the non-Gaussianity of optical vortices by altering the viscoelasticity of samples. The discovery of the complex FBM but non-Gaussian subdiffusion of optical vortices may not only offer insight into certain fundamental physics, including the anomalous diffusion of vortices in fluids and the decoupling between Brownianity and Gaussianity, but also suggest a strong potential for utilizing optical vortices as tracers in microrheology instead of the introduced exogenous probe particles in particle tracking microrheology.
Collapse
Affiliation(s)
- Jiaxing Gong
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qi Li
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shaoqun Zeng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jing Wang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
9
|
Congy T, Azam P, Kaiser R, Pavloff N. Topological Constraints on the Dynamics of Vortex Formation in a Two-Dimensional Quantum Fluid. PHYSICAL REVIEW LETTERS 2024; 132:033804. [PMID: 38307046 DOI: 10.1103/physrevlett.132.033804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/27/2023] [Indexed: 02/04/2024]
Abstract
We present experimental and theoretical results on formation of quantum vortices in a laser beam propagating in a nonlinear medium. Topological constrains richer than the mere conservation of vorticity impose an elaborate dynamical behavior to the formation and annihilation of vortex-antivortex pairs. We identify two such mechanisms, both described by the same fold-Hopf bifurcation. One of them is particularly efficient although it is not observed in the context of liquid helium films or stationary systems because it relies on the compressible nature of the fluid of light we consider and on the nonstationarity of its flow.
Collapse
Affiliation(s)
- T Congy
- Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - P Azam
- Institut de Physique de Nice, Université Côte d'Azur, CNRS, F-06560 Valbonne, France
| | - R Kaiser
- Institut de Physique de Nice, Université Côte d'Azur, CNRS, F-06560 Valbonne, France
| | - N Pavloff
- Université Paris-Saclay, CNRS, LPTMS, 91405, Orsay, France
- Institut Universitaire de France (IUF)
| |
Collapse
|
10
|
Jia C, Liang Z. Interaction between an Impurity and Nonlinear Excitations in a Polariton Condensate. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1789. [PMID: 36554194 PMCID: PMC9778002 DOI: 10.3390/e24121789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Exploring the dynamics of a mobile impurity immersed in field excitations is challenging, as it requires to account for the entanglement between the impurity and the surrounding excitations. To this end, the impurity's effective mass has to be considered as finite, rather than infinite. Here, we theoretically investigate the interaction between a finite-mass impurity and a dissipative soliton representing nonlinear excitations in the polariton Bose-Einstein condensate (BEC). Using the Lagrange variational method and the open-dissipative Gross-Pitaevskii equation, we analytically derive the interaction phase diagram between the impurity and a dissipative bright soliton in the polariton BEC. Depending on the impurity mass, we find the dissipative soliton colliding with the impurity can transmit through, get trapped, or be reflected. This work opens a new perspective in understanding the impurity dynamics when immersed in field excitations, as well as potential applications in information processing with polariton solitons.
Collapse
|