1
|
Cao Y, Yang C, Sheng J, Wu H. Optomechanical Dark-Mode-Breaking Cooling. PHYSICAL REVIEW LETTERS 2025; 134:043601. [PMID: 39951584 DOI: 10.1103/physrevlett.134.043601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/19/2024] [Indexed: 02/16/2025]
Abstract
Optomechanical cooling of multiple degenerate mechanical modes is prevented by the mechanical dark mode due to destructive interference. Here, we report the first experimental demonstration of simultaneous cooling of two near-degenerate mechanical modes by breaking the mechanical dark mode in a two-membrane cavity optomechanical system. The dark mode is generated as the system passes the exceptional point of the anti-parity-time symmetric scheme. By introducing a second cavity mode for the additional dissipative channel, the dark mode is broken and the total phonon number is reduced by more than an order of magnitude below the dark mode cooling limit. Owing to the flexible tunability of the optomechanical coupling rates of such a four-mode coupled system, the optimized cooling efficiency can be achieved by investigating different parameter ranges. Our results provide an important step toward the ground state cooling and entanglement among multiple degenerate mechanical resonators.
Collapse
Affiliation(s)
- Yan Cao
- East China Normal University, State Key Laboratory of Precision Spectroscopy, Institute of Quantum Science and Precision Measurement, Shanghai 200062, China
| | - Cheng Yang
- East China Normal University, State Key Laboratory of Precision Spectroscopy, Institute of Quantum Science and Precision Measurement, Shanghai 200062, China
| | - Jiteng Sheng
- East China Normal University, State Key Laboratory of Precision Spectroscopy, Institute of Quantum Science and Precision Measurement, Shanghai 200062, China
- Shanxi University, Collaborative Innovation Center of Extreme Optics, Taiyuan 030006, China
| | - Haibin Wu
- East China Normal University, State Key Laboratory of Precision Spectroscopy, Institute of Quantum Science and Precision Measurement, Shanghai 200062, China
- Shanxi University, Collaborative Innovation Center of Extreme Optics, Taiyuan 030006, China
- Hefei National Laboratory, Shanghai Branch, Shanghai 201315, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| |
Collapse
|
2
|
Chegnizadeh M, Scigliuzzo M, Youssefi A, Kono S, Guzovskii E, Kippenberg TJ. Quantum collective motion of macroscopic mechanical oscillators. Science 2024; 386:1383-1388. [PMID: 39700285 DOI: 10.1126/science.adr8187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/07/2024] [Indexed: 12/21/2024]
Abstract
Collective phenomena arise from interactions within complex systems, leading to behaviors absent in individual components. Observing quantum collective phenomena with macroscopic mechanical oscillators has been impeded by the stringent requirement that oscillators be identical. We demonstrate the quantum regime for collective motion of N = 6 mechanical oscillators, a hexamer, in a superconducting circuit optomechanical platform. By increasing the optomechanical couplings, the system transitions from individual to collective motion, characterized by a [Formula: see text] enhancement of cavity-collective mode coupling, akin to superradiance of atomic ensembles. Using sideband cooling, we prepare the collective mode in the quantum ground state and measure its quantum sideband asymmetry, with zero-point motion distributed across distant oscillators. This regime of optomechanics opens avenues for studying multipartite entanglement, with potential advances in quantum metrology.
Collapse
Affiliation(s)
- Mahdi Chegnizadeh
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Institute of Electrical and Micro Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Center for Quantum Science and Engineering, EPFL, Lausanne, Switzerland
| | - Marco Scigliuzzo
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Institute of Electrical and Micro Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Center for Quantum Science and Engineering, EPFL, Lausanne, Switzerland
| | - Amir Youssefi
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Institute of Electrical and Micro Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Center for Quantum Science and Engineering, EPFL, Lausanne, Switzerland
| | - Shingo Kono
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Institute of Electrical and Micro Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Center for Quantum Science and Engineering, EPFL, Lausanne, Switzerland
| | - Evgenii Guzovskii
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Institute of Electrical and Micro Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Center for Quantum Science and Engineering, EPFL, Lausanne, Switzerland
| | - Tobias J Kippenberg
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Institute of Electrical and Micro Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Center for Quantum Science and Engineering, EPFL, Lausanne, Switzerland
| |
Collapse
|
3
|
Wodedo MA, Tesfahannes TG, Darge TY, Bedore MT, Kumela AG, Adera GB. Generation of two mode mechanical squeezing induced by nondegenerate parametric amplification. Sci Rep 2024; 14:27234. [PMID: 39516516 PMCID: PMC11549490 DOI: 10.1038/s41598-024-78168-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Squeezing light in an optomechanical system involves reducing quantum noise in one of the light's quadratures through the interaction between optical and mechanical modes. However, achieving successful implementation requires careful control of experimental parameters, which can be challenging. Here, we investigate a two-mode squeezed light transfer from optical to mechanical modes induced by a non-degenerate optical parametric amplifier (OPA). The optomechanical system is driven by frequencies nearly resonant with the anti-stokes fields that can realize cooling mechanical oscillators and quantum state transfer within a resolved sideband (good cavity) limit. Our results show that when a non-degenerate OPA is placed inside the optical cavity, the degree of squeezing in both optical and mechanical modes is significantly enhanced. This leads to the two-mode squeezed light being transferred into two-mode mechanical squeezing in the presence of the non-degenerate OPA under weak optomechanical coupling strength. Interestingly, we found that with negligible thermal bath noise, the two-mode squeezed light completely transferred to yield 50% mirror-mirror squeezing. In contrast, at higher thermal noise, the transfer of squeezed light is weak, causing the system to lose its quantum properties and behave more classically. Furthermore, we have shown that the degree of squeezing in the weak coupling regime drastically decreases with increasing mechanical dissipation rates. We believe that our scheme can achieve strong mechanical squeezing in hybrid optomechanical systems and facilitate homodyne detection to measure the quadratures of the squeezed light.
Collapse
Affiliation(s)
- Muhdin Abdo Wodedo
- Department of Applied Physics, Adama Science and Technology University, 1888, Adama, Ethiopia
| | | | | | | | | | | |
Collapse
|
4
|
Lai DG, Miranowicz A, Nori F. Nonreciprocal Topological Phonon Transfer Independent of Both Device Mass and Exceptional-Point Encircling Direction. PHYSICAL REVIEW LETTERS 2024; 132:243602. [PMID: 38949332 DOI: 10.1103/physrevlett.132.243602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/15/2024] [Indexed: 07/02/2024]
Abstract
Imposing topological operations encircling an exceptional point (EP) engenders unconventional one-way topological phonon transfer (TPT), strictly depending on the direction of EP-inclusive control loops and inherently limited to the small-mass regime of practical resonators. We here show how to beat these limitations and predict a mass-free unidirectional TPT by combining topological operations with the Fizeau light-dragging effect, which splits countercirculating optical modes. An efficient TPT happens when light enters from one chosen side of the fiber but not from the other, leading to a unique nonreciprocal TPT, independent of the direction of winding around the EP. Unlike previous proposals naturally sensitive to both mass and quality of quantum devices, our approach is almost immune to these factors. Remarkably, its threshold duration of adiabatic control loops for maintaining an optimal TPT can be easily shortened, yielding a top-speed-tunable perfect TPT that has no counterpart in previous demonstrations. The study paves a quite-general route to exploiting profoundly different chiral topological effects, independent of both EP-encircling direction and device mass.
Collapse
Affiliation(s)
| | | | - Franco Nori
- Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN Wakoshi, Saitama 351-0198, Japan
- Center for Quantum Computing, RIKEN, Wakoshi, Saitama, 351-0198, Japan
- Physics Department, University of Michigan, Ann Arbor, Michigan, 48109-1040, USA
| |
Collapse
|
5
|
Chen HJ. Two-color electromagnetically induced transparency generated slow light in double-mechanical-mode coupling carbon nanotube resonators. iScience 2024; 27:109328. [PMID: 38500837 PMCID: PMC10946331 DOI: 10.1016/j.isci.2024.109328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/03/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
We theoretically propose a multiple-mode-coupling hybrid quantum system comprising two-mode-coupling nanomechanical carbon nanotube (CNT) resonators realized by a phase-dependent phonon-exchange interaction interacting with the same nitrogen-vacancy (NV) center in diamond. We investigate the coherent optical responses of the NV center under the condition of resonance and detuning. In particular, two-color electromagnetically induced transparency (EIT) can be achieved by controlling the system parameters and coupling regimes. Combining the spin-phonon interactions and phonon-phonon coupling with the modulation phase, the switching of one and two EIT windows has been demonstrated, which generates a light delay or advance. The slow-to-fast and fast-to-slow light transitions have been studied in different coupling regimes, and the switch between slow and fast light can be controlled periodically by tuning the modulation phase. The study can be applied to phonon-mediated optical information storage or information processing with spin qubits based on multiple-mode hybrid quantum systems.
Collapse
Affiliation(s)
- Hua-Jun Chen
- School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan, Anhui 232001, China
- Center for Fundamental Physics, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| |
Collapse
|
6
|
Liu ZQ, Liu L, Meng ZZ, Tan L, Liu WM. Simultaneously enhanced magnomechanical cooling and entanglement assisted by an auxiliary microwave cavity. OPTICS EXPRESS 2024; 32:722-741. [PMID: 38175094 DOI: 10.1364/oe.504580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024]
Abstract
We propose a mechanism to simultaneously enhance quantum cooling and entanglement via coupling an auxiliary microwave cavity to a magnomechanical cavity. The auxiliary cavity acts as a dissipative cold reservoir that can efficiently cool multiple localized modes in the primary system via beam-splitter interactions, which enables us to obtain strong quantum cooling and entanglement. We analyze the stability of the system and determine the optimal parameter regime for cooling and entanglement under the auxiliary-microwave-cavity-assisted (AMCA) scheme. The maximum cooling enhancement rate of the magnon mode can reach 98.53%, which clearly reveals that the magnomechanical cooling is significantly improved in the presence of the AMCA. More importantly, the dual-mode entanglement of the system can also be significantly enhanced by AMCA in the full parameter region, where the initial magnon-phonon entanglement can be maximally enhanced by a factor of about 11. Another important result of the AMCA is that it also increases the robustness of the entanglement against temperature. Our approach provides a promising platform for the experimental realization of entanglement and quantum information processing based on cavity magnomechanics.
Collapse
|
7
|
Wu SX, Bai CH, Li G, Yu CS, Zhang T. Quantum squeezing-induced quantum entanglement and EPR steering in a coupled optomechanical system. OPTICS EXPRESS 2024; 32:260-274. [PMID: 38175054 DOI: 10.1364/oe.510160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
We propose a theoretical project in which quantum squeezing induces quantum entanglement and Einstein-Podolsky-Rosen steering in a coupled whispering-gallery-mode optomechanical system. Through pumping the χ(2)-nonlinear resonator with the phase matching condition, the generated squeezed resonator mode and the mechanical mode of the optomechanical resonator can generate strong quantum entanglement and EPR steering, where the squeezing of the nonlinear resonator plays the vital role. The transitions from zero entanglement to strong entanglement and one-way steering to two-way steering can be realized by adjusting the system parameters appropriately. The photon-photon entanglement and steering between the two resonators can also be obtained by deducing the amplitude of the driving laser. Our project does not need an extraordinarily squeezed field, and it is convenient to manipulate and provides a novel and flexible avenue for diverse applications in quantum technology dependent on both optomechanical and photon-photon entanglement and steering.
Collapse
|
8
|
Zheng LL, Shi W, Shen K, Kong D, Wang F. Controlling magnon-magnon entanglement and steering by atomic coherence. OPTICS EXPRESS 2023; 31:32953-32967. [PMID: 37859086 DOI: 10.1364/oe.493946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/15/2023] [Indexed: 10/21/2023]
Abstract
Here we show that it is possible to control magnon-magnon entanglement in a hybrid magnon-atom-cavity system based on atomic coherence. In a four-level V-type atomic system, two strong fields are applied to drive two dipole-allowed transitions and two microwave cavity modes are coupled with two dipole forbidden transitions as well as two magnon modes simultaneously. It is found that the stable magnon-magnon entanglement, one-way steering and two-way EPR steering can be generated and controlled by atomic coherence according to the following two points: (i) the coherent coupling between magnon and atoms is established via exchange of virtual photons; (ii) the dissipation of magnon mode is dominant over amplification since one of the atomic states mediated one-channel interaction always keeps empty. The coherent control of magnon-magnon correlations provides an effective approach to modify macroscopic quantum effects using the laser-driven atomic systems.
Collapse
|
9
|
Liu X, Yang R, Zhang J, Zhang T. Generation of multipartite entangled states based on a double-longitudinal-mode cavity optomechanical system. OPTICS EXPRESS 2023; 31:30005-30019. [PMID: 37710553 DOI: 10.1364/oe.496528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/13/2023] [Indexed: 09/16/2023]
Abstract
An optomechanical system is a promising platform to connect different "notes" of quantum networks. Therefore, entanglements generated from it is also of great importance. In this paper, the parameter dependence of optomechanical and optical-optical entanglements generated from the double-longitudinal-mode cavity optomechanical system are discussed and two quadrapartite entanglement generation schemes based on such a system are proposed. Furthermore, 2N and 4N-partite entangled states of optical modes can be obtained by coupling N cavities that used in the above two schemes with N-1 beamsplitters, respectively. Certain ladder or linear entanglement structures are included in the finally obtained entangled state, which are important for its application in one-way quantum computing.
Collapse
|
10
|
Yu ZF, Xue JK. Photonic transistor based on a coupled-cavity system with polaritons. OPTICS EXPRESS 2023; 31:26276-26288. [PMID: 37710491 DOI: 10.1364/oe.492686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/17/2023] [Indexed: 09/16/2023]
Abstract
We investigate the transmission of probe fields in a coupled-cavity system with polaritons and propose a theoretical schema for realizing a polariton-based photonic transistor. When probe light passes through such a hybrid optomechanical device, its resonant point with Stokes or anti-Stokes scattered effects, intensity with amplification or attenuation effects, as well as group velocity with slow or fast light effects can be effectively controlled by another pump light. This controlling depends on the exciton-photon coupling and single-photon coupling. We also discover an asymmetric Fano resonance in transparency windows under the strong exciton-photon coupling, which is different from general symmetric optomechanically induced transparency. Our results open up exciting possibilities for designing photonic transistors, which may be useful for implementing polariton integrated circuits.
Collapse
|
11
|
Li Z, Li X, Zhong X. Optomechanical entanglement affected by exceptional point in a WGM resonator system. OPTICS EXPRESS 2023; 31:19382-19391. [PMID: 37381354 DOI: 10.1364/oe.488948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/01/2023] [Indexed: 06/30/2023]
Abstract
Entanglement of optical mode and mechanical mode plays a significant role for quantum information processing and memory. This type of optomechanical entanglement is always be suppressed by the mechanically dark-mode (DM) effect. However, the reason of the DM generation and how to control the bright-mode (BM) effect flexibly are still not resolved. In this letter, we demonstrate that the DM effect occurs at the exceptional point (EP) and it can be broken by changing the relative phase angle (RPA) between the nano scatters. We find that the optical mode and mechanical mode are separable at EPs but entangled when the RPA is tuned away from the EPs. Remarkably, the DM effect will be broken if the RPA away from EPs, resulting in the ground-state cooling of the mechanical mode. In addition, we prove that the chirality of the system can also influence the optomechanical entanglement. Our scheme can control the entanglement flexible merely depend on the relative phase angle, which is continuously adjustable and experimentally more feasible.
Collapse
|