1
|
Hutin H, Essig A, Assouly R, Rouchon P, Bienfait A, Huard B. Monitoring the Energy of a Cavity by Observing the Emission of a Repeatedly Excited Qubit. PHYSICAL REVIEW LETTERS 2024; 133:153602. [PMID: 39454161 DOI: 10.1103/physrevlett.133.153602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/30/2024] [Indexed: 10/27/2024]
Abstract
The number of excitations in a large quantum system (harmonic oscillator or qudit) can be measured in a quantum nondemolition manner using a dispersively coupled qubit. It typically requires a series of qubit pulses that encode various binary questions about the photon number. Recently, a method based on the fluorescence measurement of a qubit driven by a train of identical pulses was introduced to track the photon number in a cavity, hence simplifying its monitoring and raising interesting questions about the measurement backaction of this scheme. A first realization with superconducting circuits demonstrated how the average number of photons could be measured in this way. Here we present an experiment that reaches single-shot photocounting and number tracking owing to a cavity decay rate 4 orders of magnitude smaller than both the dispersive coupling rate and the qubit emission rate. An innovative notch filter and pogo-pin-based galvanic contact makes possible these seemingly incompatible features. The qubit dynamics under the pulse train is characterized. We observe quantum jumps by monitoring the photon number via the qubit fluorescence as photons leave the cavity one at a time. Additionally, we extract the measurement rate and induced dephasing rate and compare them to theoretical models. Our method could be applied to quantum error correction protocols on bosonic codes or qudits.
Collapse
Affiliation(s)
| | | | | | - P Rouchon
- Laboratoire de Physique de l'Ecole normale supérieure, Mines-Paris - PSL, Inria, ENS-PSL, CNRS, Université PSL, Paris, France
| | | | | |
Collapse
|
2
|
Lipka-Bartosik P, Perarnau-Llobet M, Brunner N. Thermodynamic computing via autonomous quantum thermal machines. SCIENCE ADVANCES 2024; 10:eadm8792. [PMID: 39231232 PMCID: PMC11758477 DOI: 10.1126/sciadv.adm8792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
We develop a physics-based model for classical computation based on autonomous quantum thermal machines. These machines consist of few interacting quantum bits (qubits) connected to several environments at different temperatures. Heat flows through the machine are here exploited for computing. The process starts by setting the temperatures of the environments according to the logical input. The machine evolves, eventually reaching a nonequilibrium steady state, from which the output of the computation can be determined via the temperature of an auxilliary finite-size reservoir. Such a machine, which we term a "thermodynamic neuron," can implement any linearly separable function, and we discuss explicitly the cases of NOT, 3-MAJORITY, and NOR gates. In turn, we show that a network of thermodynamic neurons can perform any desired function. We discuss the close connection between our model and artificial neurons (perceptrons) and argue that our model provides an alternative physics-based analog implementation of neural networks, and more generally a platform for thermodynamic computing.
Collapse
Affiliation(s)
| | | | - Nicolas Brunner
- Department of Applied Physics, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
3
|
Ferreira J, Jin T, Mannhart J, Giamarchi T, Filippone M. Transport and Nonreciprocity in Monitored Quantum Devices: An Exact Study. PHYSICAL REVIEW LETTERS 2024; 132:136301. [PMID: 38613271 DOI: 10.1103/physrevlett.132.136301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/03/2024] [Accepted: 01/25/2024] [Indexed: 04/14/2024]
Abstract
We study noninteracting fermionic systems undergoing continuous monitoring and driven by biased reservoirs. Averaging over the measurement outcomes, we derive exact formulas for the particle and heat flows in the system. We show that these currents feature competing elastic and inelastic components, which depend nontrivially on the monitoring strength γ. We highlight that monitor-induced inelastic processes lead to nonreciprocal currents, allowing one to extract work from measurements without active feedback control. We illustrate our formalism with two distinct monitoring schemes providing measurement-induced power or cooling. Optimal performances are found for values of the monitoring strength γ, which are hard to address with perturbative approaches.
Collapse
Affiliation(s)
- João Ferreira
- Department of Quantum Matter Physics, École de Physique University of Geneva, 1211 Geneva, Switzerland
| | - Tony Jin
- Department of Quantum Matter Physics, École de Physique University of Geneva, 1211 Geneva, Switzerland
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Jochen Mannhart
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Thierry Giamarchi
- Department of Quantum Matter Physics, École de Physique University of Geneva, 1211 Geneva, Switzerland
| | - Michele Filippone
- IRIG-MEM-L_Sim, Université Grenoble Alpes, CEA, Grenoble INP, Grenoble 38000, France
| |
Collapse
|
4
|
Boettcher V, Hartmann R, Beyer K, Strunz WT. Dynamics of a strongly coupled quantum heat engine-Computing bath observables from the hierarchy of pure states. J Chem Phys 2024; 160:094108. [PMID: 38436445 DOI: 10.1063/5.0192075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
We present a fully quantum dynamical treatment of a quantum heat engine and its baths based on the Hierarchy of Pure States (HOPS), an exact and general method for open quantum system dynamics. We show how the change of the bath energy and the interaction energy can be determined within HOPS for arbitrary coupling strength and smooth time dependence of the modulation protocol. The dynamics of all energetic contributions during the operation can be carefully examined both in its initial transient phase and, also later, in its periodic steady state. A quantum Otto engine with a qubit as an inherently nonlinear work medium is studied in a regime where the energy associated with the interaction Hamiltonian plays an important role for the global energy balance and, thus, must not be neglected when calculating its power and efficiency. We confirm that the work required to drive the coupling with the baths sensitively depends on the speed of the modulation protocol. Remarkably, departing from the conventional scheme of well-separated phases by allowing for temporal overlap, we discover that one can even gain energy from the modulation of bath interactions. We visualize these various work contributions using the analog of state change diagrams of thermodynamic cycles. We offer a concise, full presentation of HOPS with its extension to bath observables, as it serves as a universal tool for the numerically exact description of general quantum dynamical (thermodynamic) scenarios far from the weak-coupling limit.
Collapse
Affiliation(s)
- Valentin Boettcher
- Institute of Theoretical Physics, TUD Dresden University of Technology, 01062 Dresden, Germany
- Department of Physics, McGill University, Montréal, Québec H3A 2T8, Canada
| | - Richard Hartmann
- Institute of Theoretical Physics, TUD Dresden University of Technology, 01062 Dresden, Germany
| | - Konstantin Beyer
- Institute of Theoretical Physics, TUD Dresden University of Technology, 01062 Dresden, Germany
- Department of Physics, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA
| | - Walter T Strunz
- Institute of Theoretical Physics, TUD Dresden University of Technology, 01062 Dresden, Germany
| |
Collapse
|
5
|
Maillette de Buy Wenniger I, Thomas SE, Maffei M, Wein SC, Pont M, Belabas N, Prasad S, Harouri A, Lemaître A, Sagnes I, Somaschi N, Auffèves A, Senellart P. Experimental Analysis of Energy Transfers between a Quantum Emitter and Light Fields. PHYSICAL REVIEW LETTERS 2023; 131:260401. [PMID: 38215371 DOI: 10.1103/physrevlett.131.260401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/02/2023] [Accepted: 11/14/2023] [Indexed: 01/14/2024]
Abstract
Energy can be transferred between two quantum systems in two forms: unitary energy-that can be used to drive another system-and correlation energy-that reflects past correlations. We propose and implement experimental protocols to access these energy transfers in interactions between a quantum emitter and light fields. Upon spontaneous emission, we measure the unitary energy transfer from the emitter to the light field and show that it never exceeds half the total energy transfer and is reduced when introducing decoherence. We then study the interference of the emitted field and a coherent laser field at a beam splitter and show that the nature of the energy transfer quantitatively depends on the quantum purity of the emitted field.
Collapse
Affiliation(s)
- I Maillette de Buy Wenniger
- Centre for Nanosciences and Nanotechnology, CNRS, Université Paris-Saclay, UMR 9001, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France
| | - S E Thomas
- Centre for Nanosciences and Nanotechnology, CNRS, Université Paris-Saclay, UMR 9001, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France
| | - M Maffei
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - S C Wein
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
- Quandela SAS, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France
| | - M Pont
- Centre for Nanosciences and Nanotechnology, CNRS, Université Paris-Saclay, UMR 9001, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France
| | - N Belabas
- Centre for Nanosciences and Nanotechnology, CNRS, Université Paris-Saclay, UMR 9001, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France
| | - S Prasad
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - A Harouri
- Centre for Nanosciences and Nanotechnology, CNRS, Université Paris-Saclay, UMR 9001, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France
| | - A Lemaître
- Centre for Nanosciences and Nanotechnology, CNRS, Université Paris-Saclay, UMR 9001, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France
| | - I Sagnes
- Centre for Nanosciences and Nanotechnology, CNRS, Université Paris-Saclay, UMR 9001, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France
| | - N Somaschi
- Quandela SAS, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France
| | - A Auffèves
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
- MajuLab, CNRS-UCA-SU-NUS-NTU International Joint Research Laboratory, Singapore, Singapore
- Centre for Quantum Technologies, National University of Singapore, 117543 Singapore, Singapore
| | - P Senellart
- Centre for Nanosciences and Nanotechnology, CNRS, Université Paris-Saclay, UMR 9001, 10 Boulevard Thomas Gobert, 91120 Palaiseau, France
| |
Collapse
|
6
|
Xuereb J, Erker P, Meier F, Mitchison MT, Huber M. Impact of Imperfect Timekeeping on Quantum Control. PHYSICAL REVIEW LETTERS 2023; 131:160204. [PMID: 37925703 DOI: 10.1103/physrevlett.131.160204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/22/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023]
Abstract
In order to unitarily evolve a quantum system, an agent requires knowledge of time, a parameter that no physical clock can ever perfectly characterize. In this Letter, we study how limitations on acquiring knowledge of time impact controlled quantum operations in different paradigms. We show that the quality of timekeeping an agent has access to limits the circuit complexity they are able to achieve within circuit-based quantum computation. We do this by deriving an upper bound on the average gate fidelity achievable under imperfect timekeeping for a general class of random circuits. Another area where quantum control is relevant is quantum thermodynamics. In that context, we show that cooling a qubit can be achieved using a timer of arbitrary quality for control: timekeeping error only impacts the rate of cooling and not the achievable temperature. Our analysis combines techniques from the study of autonomous quantum clocks and the theory of quantum channels to understand the effect of imperfect timekeeping on controlled quantum dynamics.
Collapse
Affiliation(s)
- Jake Xuereb
- Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1020 Vienna, Austria
| | - Paul Erker
- Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1020 Vienna, Austria
- Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
| | - Florian Meier
- Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1020 Vienna, Austria
| | - Mark T Mitchison
- School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland
- Trinity Quantum Alliance, Unit 16, Trinity Technology and Enterprise Centre, Pearse Street, Dublin 2, D02YN67, Ireland
| | - Marcus Huber
- Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1020 Vienna, Austria
- Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
| |
Collapse
|
7
|
Crescente A, Ferraro D, Carrega M, Sassetti M. Analytically Solvable Model for Qubit-Mediated Energy Transfer between Quantum Batteries. ENTROPY (BASEL, SWITZERLAND) 2023; 25:758. [PMID: 37238512 PMCID: PMC10217090 DOI: 10.3390/e25050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Abstract
The coherent energy transfer between two identical two-level systems is investigated. Here, the first quantum system plays the role of a charger, while the second can be seen as a quantum battery. Firstly, a direct energy transfer between the two objects is considered and then compared to a transfer mediated by an additional intermediate two-level system. In this latter case, it is possible to distinguish between a two-step process, where the energy is firstly transferred from the charger to the mediator and only after from the mediator to the battery, and a single-step in which the two transfers occurs simultaneously. The differences between these configurations are discussed in the framework of an analytically solvable model completing what recently discussed in literature.
Collapse
Affiliation(s)
- Alba Crescente
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
- CNR-SPIN, Via Dodecaneso 33, 16146 Genova, Italy
| | - Dario Ferraro
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
- CNR-SPIN, Via Dodecaneso 33, 16146 Genova, Italy
| | | | - Maura Sassetti
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
- CNR-SPIN, Via Dodecaneso 33, 16146 Genova, Italy
| |
Collapse
|
8
|
Buffoni L, Gherardini S, Zambrini Cruzeiro E, Omar Y. Third Law of Thermodynamics and the Scaling of Quantum Computers. PHYSICAL REVIEW LETTERS 2022; 129:150602. [PMID: 36269957 DOI: 10.1103/physrevlett.129.150602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
The third law of thermodynamics, also known as the Nernst unattainability principle, puts a fundamental bound on how close a system, whether classical or quantum, can be cooled to a temperature near to absolute zero. On the other hand, a fundamental assumption of quantum computing is to start each computation from a register of qubits initialized in a pure state, i.e., at zero temperature. These conflicting aspects, at the interface between quantum computing and thermodynamics, are often overlooked or, at best, addressed only at a single-qubit level. In this Letter, we argue how the existence of a small but finite effective temperature, which makes the initial state a mixed state, poses a real challenge to the fidelity constraints required for the scaling of quantum computers. Our theoretical results, carried out for a generic quantum circuit with N-qubit input states, are validated by test runs performed on a real quantum processor.
Collapse
Affiliation(s)
| | - Stefano Gherardini
- PQI-Portuguese Quantum Institute, 1049-001 Lisboa, Portugal
- CNR-INO, Area Science Park, Basovizza, I-34149 Trieste, Italy
- LENS, University of Florence, via G. Sansone 1, I-50019 Sesto Fiorentino, Italy
| | | | - Yasser Omar
- PQI-Portuguese Quantum Institute, 1049-001 Lisboa, Portugal
- Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Centro de Física e Engenharia de Materiais Avançados (CeFEMA), Physics of Information and Quantum Technologies Group, 1049-001 Lisboa, Portugal
| |
Collapse
|