1
|
Shen J, Gao J, Yi C, Li M, Zhang S, Yang J, Wang B, Zhou M, Huang R, Wei H, Yang H, Shi Y, Xu X, Gao HJ, Shen B, Li G, Wang Z, Liu E. Magnetic-field modulation of topological electronic state and emergent magneto-transport in a magnetic Weyl semimetal. Innovation (N Y) 2023; 4:100399. [PMID: 36923023 PMCID: PMC10009535 DOI: 10.1016/j.xinn.2023.100399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The modulation of topological electronic state by an external magnetic field is highly desired for condensed-matter physics. Schemes to achieve this have been proposed theoretically, but few can be realized experimentally. Here, combining transverse transport, theoretical calculations, and scanning tunneling microscopy/spectroscopy (STM/S) investigations, we provide an observation that the topological electronic state, accompanied by an emergent magneto-transport phenomenon, was modulated by applying magnetic field through induced non-collinear magnetism in the magnetic Weyl semimetal EuB6. A giant unconventional anomalous Hall effect (UAHE) is found during the magnetization re-orientation from easy axes to hard ones in magnetic field, with a UAHE peak around the low field of 5 kOe. Under the reasonable spin-canting effect, the folding of the topological anti-crossing bands occurs, generating a strong Berry curvature that accounts for the observed UAHE. Field-dependent STM/S reveals a highly synchronous evolution of electronic density of states, with a dI/dV peak around the same field of 5 kOe, which provides evidence to the folded bands and excited UAHE by external magnetic fields. This finding elucidates the connection between the real-space non-collinear magnetism and the k-space topological electronic state and establishes a novel manner to engineer the magneto-transport behaviors of correlated electrons for future topological spintronics.
Collapse
Affiliation(s)
- Jianlei Shen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & Research Institute of Materials Science, Shanxi Normal University, Taiyuan 030000, China
| | - Jiacheng Gao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changjiang Yi
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Meng Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shen Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinying Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Binbin Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Min Zhou
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Rongjin Huang
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongxiang Wei
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Haitao Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Youguo Shi
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Xiaohong Xu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education & Research Institute of Materials Science, Shanxi Normal University, Taiyuan 030000, China
| | - Hong-Jun Gao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Baogen Shen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China.,Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, China
| | - Geng Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Zhijun Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Enke Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,Songshan Lake Materials Laboratory, Dongguan 523808, China
| |
Collapse
|