1
|
Dessert C, Ning O, Rodd NL, Safdi BR. Resurrecting Hitomi for Decaying Dark Matter and Forecasting Leading Sensitivity for XRISM. PHYSICAL REVIEW LETTERS 2024; 132:211002. [PMID: 38856287 DOI: 10.1103/physrevlett.132.211002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/25/2024] [Indexed: 06/11/2024]
Abstract
The Hitomi x-ray satellite mission carried unique high-resolution spectrometers that were set to revolutionize the search for sterile neutrino dark matter (DM) by looking for narrow x-ray lines arising from DM decays. Unfortunately, the satellite was lost shortly after launch, and to date the only analysis using Hitomi for DM decay used data taken towards the Perseus cluster. In this work we present a significantly more sensitive search from an analysis of archival Hitomi data towards blank sky locations, searching for DM decaying in our own Milky Way. The recently launched XRISM satellite has nearly identical soft-x-ray spectral capabilities to Hitomi; we project the full-mission sensitivity of XRISM for analyses of their future blank-sky data, and we find that XRISM will have the leading sensitivity to decaying DM for masses between roughly 1 to 18 keV, with important implications for sterile neutrino and heavy axionlike particle DM scenarios.
Collapse
Affiliation(s)
- Christopher Dessert
- Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, New York 10003, USA
- Center for Computational Astrophysics, Flatiron Institute, New York, New York 10010, USA
| | - Orion Ning
- Berkeley Center for Theoretical Physics, University of California, Berkeley, California 94720, USA
- Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Nicholas L Rodd
- Theoretical Physics Department, CERN, 1 Esplanade des Particules, CH-1211 Geneva 23, Switzerland
| | - Benjamin R Safdi
- Berkeley Center for Theoretical Physics, University of California, Berkeley, California 94720, USA
- Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
2
|
Diamond M, Fiorillo D, Marques-Tavares G, Tamborra I, Vitagliano E. Multimessenger Constraints on Radiatively Decaying Axions from GW170817. PHYSICAL REVIEW LETTERS 2024; 132:101004. [PMID: 38518343 DOI: 10.1103/physrevlett.132.101004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/26/2023] [Accepted: 12/06/2023] [Indexed: 03/24/2024]
Abstract
The metastable hypermassive neutron star produced in the coalescence of two neutron stars can copiously produce axions that radiatively decay into O(100) MeV photons. These photons can form a fireball with characteristic temperature smaller than 1 MeV. By relying on x-ray observations of GW170817/GRB 170817A with CALET CGBM, Konus-Wind, and Insight-HXMT/HE, we present new bounds on the axion-photon coupling for axion masses in the range 1-400 MeV. We exclude couplings down to 5×10^{-11} GeV^{-1}, complementing and surpassing existing constraints. Our approach can be extended to any feebly interacting particle decaying into photons.
Collapse
Affiliation(s)
- M Diamond
- Arthur B. McDonald Canadian Astropartical Physics Institute, Queens University, Kingston, Ontario K7L 3N6, Canada
| | - D Fiorillo
- Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - G Marques-Tavares
- Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| | - I Tamborra
- Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
- DARK, Niels Bohr Institute, University of Copenhagen, Jagtvej 128, 2200 Copenhagen, Denmark
| | - E Vitagliano
- Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
3
|
Liang Z, Xu W, Li J, Lin C, Zhang W, Liu W, Xia XH, Zhou YG. Unveiling the Solvent Effect in Plasmon Enhanced Electrochemistry via the Nanoparticle-Impact Technique. NANO LETTERS 2023. [PMID: 37955520 DOI: 10.1021/acs.nanolett.3c03091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Plasmon-enhanced electrochemistry (PEEC) has been observed to facilitate energy conversion systems by converting light energy to chemical energy. However, comprehensively understanding the PEEC mechanism remains challenging due to the predominant use of ensemble-based methodologies on macroscopic electrodes, which fails to measure electron-transfer kinetics due to constraints from mass transport and the averaging effect. In this study, we have employed nanoparticle impact electrochemistry (NIE), a newly developed electroanalytical technique capable of measuring electrochemical dynamics at a single-nanoparticle level under optimal mass transport conditions, along with microscopic electron-transfer theory for data interpretation. By investigating the plasmon enhanced hydrogen evolution reaction (HER) at individual silver nanoparticles (AgNPs), we have clearly revealed the previously unknown influence of solvent effects within the PEEC mechanism. This finding suggests an additional approach to optimize plasmon-assisted electrocatalysis and electrosynthesis systems.
Collapse
Affiliation(s)
- Zerong Liang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan Province, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511340, Guangdong Province, China
| | - Wei Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan Province, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511340, Guangdong Province, China
| | - Jian Li
- State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210093 Nanjing, China
| | - Chuhong Lin
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Wenmin Zhang
- Department of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou, 450044, Henan Province, China
| | - Wensheng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan Province, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511340, Guangdong Province, China
| | - Xing-Hua Xia
- State Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210093 Nanjing, China
| | - Yi-Ge Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan Province, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511340, Guangdong Province, China
| |
Collapse
|