1
|
Yang S, Hong C, Zhu G, Anyika T, Hong I, Ndukaife JC. Recent Advancements in Nanophotonics for Optofluidics. ADVANCES IN PHYSICS: X 2024; 9:2416178. [PMID: 39554474 PMCID: PMC11563312 DOI: 10.1080/23746149.2024.2416178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 10/08/2024] [Indexed: 11/19/2024] Open
Abstract
Optofluidics is dedicated to achieving integrated control of particle and fluid motion, particularly on the micrometer scale, by utilizing light to direct fluid flow and particle motion. The field has seen significant growth recently, driven by the concerted efforts of researchers across various scientific disciplines, notably for its successful applications in biomedical science. In this review, we explore a range of optofluidic architectures developed over the past decade, with a primary focus on mechanisms for precise control of micro and nanoscale biological objects and their applications in sensing. Regarding nanoparticle manipulation, we delve into mechanisms based on optical nanotweezers using nanolocalized light fields and light-based hybrid effects with dramatically improved performance and capabilities. In the context of sensing, we emphasize those works that used optofluidics to aggregate molecules or particles to promote sensing and detection. Additionally, we highlight emerging research directions, encompassing both fundamental principles and practical applications in the field.
Collapse
Affiliation(s)
- Sen Yang
- Institute of Physics, Chinese Academy of Sciences/Beijing National Laboratory for Condensed Matter Physics, Beijing 100190, China
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, Tennessee 37240, USA
| | - Chuchuan Hong
- Department of Chemistry and Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Guodong Zhu
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Theodore Anyika
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Ikjun Hong
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Justus C. Ndukaife
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, Tennessee 37240, USA
| |
Collapse
|
2
|
Zhu G, Yang S, Ndukaife JC. Merging toroidal dipole bound states in the continuum without up-down symmetry in Lieb lattice metasurfaces. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:1561-1568. [PMID: 39678183 PMCID: PMC11636481 DOI: 10.1515/nanoph-2023-0686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/26/2024] [Indexed: 12/17/2024]
Abstract
The significance of bound states in the continuum (BICs) lies in their potential for theoretically infinite quality factors. However, their actual quality factors are limited by imperfections in fabrication, which lead to coupling with the radiation continuum. In this study, we present a novel approach to address this issue by introducing a merging BIC regime based on a Lieb lattice. By utilizing this approach, we effectively suppress the out-of-plane scattering loss, thereby enhancing the robustness of the structure against fabrication artifacts. Notably, unlike previous merging systems, our design does not rely on the up-down symmetry of metasurfaces. This characteristic grants more flexibility in applications that involve substrates and superstrates with different optical properties, such as microfluidic devices. Furthermore, we incorporate a lateral band gap mirror into the design to encapsulate the BIC structure. This mirror serves to suppress the in-plane radiation resulting from finite-size effects, leading to a remarkable ten-fold improvement in the quality factor. Consequently, our merged BIC metasurface, enclosed by the Lieb lattice photonic crystal mirror, achieves an exceptionally high-quality factor of 105 while maintaining a small footprint of 26.6 × 26.6 μm. Our findings establish an appealing platform that capitalizes on the topological nature of BICs within compact structures. This platform holds great promise for various applications, including optical trapping, optofluidics, and high-sensitivity biodetection, opening up new possibilities in these fields.
Collapse
Affiliation(s)
- Guodong Zhu
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, 37235, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Sen Yang
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, 37235, USA
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, TN, 37235, USA
| | - Justus C. Ndukaife
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, 37235, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, 37235, USA
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, TN, 37235, USA
| |
Collapse
|
3
|
Hong C, Hong I, Yang S, Ndukaife JC. Towards rapid colorimetric detection of extracellular vesicles using optofluidics-enhanced color-changing optical metasurface. OPTICS EXPRESS 2024; 32:4769-4777. [PMID: 38439221 DOI: 10.1364/oe.506686] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/09/2023] [Indexed: 03/06/2024]
Abstract
Efficient transportation and delivery of analytes to the surface of optical sensors are crucial for overcoming limitations in diffusion-limited transport and analyte sensing. In this study, we propose a novel approach that combines metasurface optics with optofluidics-enabled active transport of extracellular vesicles (EVs). By leveraging this combination, we show that we can rapidly capture EVs and detect their adsorption through a color change generated by a specially designed optical metasurface that produces structural colors. Our results demonstrate that the integration of optofluidics and metasurface optics enables spectrometer-less and label-free colorimetric read-out for EV concentrations as low as 107 EVs/ml, achieved within a short incubation time of two minutes.
Collapse
|
4
|
Anyika T, Hong I, Ndukaife JC. Mirror-Enhanced Plasmonic Nanoaperture for Ultrahigh Optical Force Generation with Minimal Heat Generation. NANO LETTERS 2023; 23:11416-11423. [PMID: 37987748 PMCID: PMC11271985 DOI: 10.1021/acs.nanolett.3c02543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Double Nanohole Plasmonic Tweezers (DNH) have emerged as a powerful approach for confining light to sub-wavelength volume, enabling the trapping of nanoscale particles much smaller than the wavelength of light. However, to circumvent plasmonic heating effects, DNH tweezers are typically operated off-resonance, resulting in reduced optical forces and field enhancements. In this study, we introduce a novel DNH design with a reflector layer, enabling on-resonance illumination while minimizing plasmonic heating. This design efficiently dissipates heat and redistributes the electromagnetic hotspots, making them more accessible for trapping nanoscale particles and enhancing light-matter interactions. We also demonstrate low-power trapping and release of small extracellular vesicles. Our work opens new possibilities for trapping-assisted Surface Enhanced Raman Spectroscopy (SERS), plasmon-enhanced imaging, and single photon emission applications that demand strong light-matter interactions.
Collapse
Affiliation(s)
- Theodore Anyika
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Nanoscale Science and Engineering, Nashville, Tennessee 37235, United States
| | - Ikjun Hong
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Nanoscale Science and Engineering, Nashville, Tennessee 37235, United States
| | - Justus C Ndukaife
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Nanoscale Science and Engineering, Nashville, Tennessee 37235, United States
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
5
|
Hong C, Ndukaife JC. Scalable trapping of single nanosized extracellular vesicles using plasmonics. Nat Commun 2023; 14:4801. [PMID: 37558710 PMCID: PMC10412615 DOI: 10.1038/s41467-023-40549-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/26/2023] [Indexed: 08/11/2023] Open
Abstract
Heterogeneous nanoscale extracellular vesicles (EVs) are of significant interest for disease detection, monitoring, and therapeutics. However, trapping these nano-sized EVs using optical tweezers has been challenging due to their small size. Plasmon-enhanced optical trapping offers a solution. Nevertheless, existing plasmonic tweezers have limited throughput and can take tens of minutes for trapping for low particle concentrations. Here, we present an innovative approach called geometry-induced electrohydrodynamic tweezers (GET) that overcomes these limitations. GET generates multiple electrohydrodynamic potentials, allowing parallel transport and trapping of single EVs within seconds. By integrating nanoscale plasmonic cavities at the center of each GET trap, single EVs can be placed near plasmonic cavities, enabling instant plasmon-enhanced optical trapping upon laser illumination without detrimental heating effects. These non-invasive scalable hybrid nanotweezers open new horizons for high-throughput tether-free plasmon-enhanced single EV trapping and spectroscopy. Other potential areas of impact include nanoplastics characterization, and scalable hybrid integration for quantum photonics.
Collapse
Affiliation(s)
- Chuchuan Hong
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA
| | - Justus C Ndukaife
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA.
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
6
|
Yang S, Ndukaife JC. Optofluidic transport and assembly of nanoparticles using an all-dielectric quasi-BIC metasurface. LIGHT, SCIENCE & APPLICATIONS 2023; 12:188. [PMID: 37507389 PMCID: PMC10382587 DOI: 10.1038/s41377-023-01212-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023]
Abstract
Manipulating fluids by light at the micro/nanoscale has been a long-sought-after goal for lab-on-a-chip applications. Plasmonic heating has been demonstrated to control microfluidic dynamics due to the enhanced and confined light absorption from the intrinsic losses of metals. Dielectrics, the counterpart of metals, has been used to avoid undesired thermal effects due to its negligible light absorption. Here, we report an innovative optofluidic system that leverages a quasi-BIC-driven all-dielectric metasurface to achieve subwavelength scale control of temperature and fluid motion. Our experiments show that suspended particles down to 200 nanometers can be rapidly aggregated to the center of the illuminated metasurface with a velocity of tens of micrometers per second, and up to millimeter-scale particle transport is demonstrated. The strong electromagnetic field enhancement of the quasi-BIC resonance increases the flow velocity up to three times compared with the off-resonant situation by tuning the wavelength within several nanometers range. We also experimentally investigate the dynamics of particle aggregation with respect to laser wavelength and power. A physical model is presented and simulated to elucidate the phenomena and surfactants are added to the nanoparticle colloid to validate the model. Our study demonstrates the application of the recently emerged all-dielectric thermonanophotonics in dealing with functional liquids and opens new frontiers in harnessing non-plasmonic nanophotonics to manipulate microfluidic dynamics. Moreover, the synergistic effects of optofluidics and high-Q all-dielectric nanostructures hold enormous potential in high-sensitivity biosensing applications.
Collapse
Affiliation(s)
- Sen Yang
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, TN, USA
| | - Justus C Ndukaife
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA.
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, TN, USA.
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|