1
|
Caprini L, Marini Bettolo Marconi U. Bubble phase induced by odd interactions in chiral systems. J Chem Phys 2025; 162:161101. [PMID: 40260797 DOI: 10.1063/5.0262594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 04/02/2025] [Indexed: 04/24/2025] Open
Abstract
We study a chiral system of particles subject to both odd interactions and standard repulsive interactions. The interplay between oddness and inertia induces a non-equilibrium phase transition from a homogeneous to a non-homogeneous phase, characterized by the emergence of bubbles due to odd interactions. This phenomenon occurs in the absence of attractions and results from the competition between pressures, arising from particle repulsion, which tends to shrink the bubble, and an effective surface force that promotes its expansion. The latter is an effective centrifugal force associated with the circular motion of particles along the bubble's surface, driven by transverse interactions. As a signature of the phase transition, the system exhibits vortex structures and oscillating spatial velocity correlations, which emerge near the analytically predicted transition point. Our findings can be tested in granular experiments involving odd interactions, such as spinners and active granular particles, and could be crucial for characterizing the emergent properties of metamaterials.
Collapse
Affiliation(s)
- Lorenzo Caprini
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome, Italy
| | | |
Collapse
|
2
|
Valecha B, Vahid H, Muzzeddu PL, Sommer JU, Sharma A. Active transport of cargo-carrying and interconnected chiral particles. SOFT MATTER 2025. [PMID: 40195901 DOI: 10.1039/d5sm00170f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Directed motion up a concentration gradient is crucial for the survival and maintenance of numerous biological systems, such as sperms moving towards an egg during fertilization or ciliates moving towards a food source. In these systems, chirality-manifested as a rotational torque-plays a vital role in facilitating directed motion. While systematic studies of active molecules in activity gradients exist, the effect of chirality remains little studied. In this study, we examine the simplest case of a chiral active particle connected to a passive particle in a spatially varying activity field. We demonstrate that this minimal setup can exhibit rich emergent tactic behaviors, with the chiral torque serving as the tuning parameter. Notably, when the chiral torque is sufficiently large, even a small passive particle enables the system to display the desired accumulation behavior. Our results further show that in the dilute limit, this desired accumulation behavior persists despite the presence of excluded volume effects. Additionally, interconnected chiral active particles exhibit emergent chemotaxis beyond a critical chain length, with trimers and longer chains exhibiting strong accumulation at sufficiently high chiral torques. This study provides valuable insights into the design principles of hybrid bio-molecular devices of the future.
Collapse
Affiliation(s)
- Bhavesh Valecha
- Mathematisch-Naturwissenschaftlich-Technische Fakultät, Institut für Physik, Universität Augsburg, Universitätsstraße 1, 86159 Augsburg, Germany.
| | - Hossein Vahid
- Leibniz-Institut für Polymerforschung Dresden, Institut Theory der Polymere, 01069 Dresden, Germany
| | | | - Jens-Uwe Sommer
- Leibniz-Institut für Polymerforschung Dresden, Institut Theory der Polymere, 01069 Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01069 Dresden, Germany
| | - Abhinav Sharma
- Mathematisch-Naturwissenschaftlich-Technische Fakultät, Institut für Physik, Universität Augsburg, Universitätsstraße 1, 86159 Augsburg, Germany.
- Leibniz-Institut für Polymerforschung Dresden, Institut Theory der Polymere, 01069 Dresden, Germany
| |
Collapse
|
3
|
Marini Bettolo Marconi U, Caprini L. Spontaneous generation of angular momentum in chiral active crystals. SOFT MATTER 2025; 21:2586-2606. [PMID: 40071394 DOI: 10.1039/d4sm01426j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
We study a two-dimensional chiral active crystal composed of underdamped chiral active particles. These particles, characterized by intrinsic handedness and persistence, interact via linear forces derived from harmonic potentials. Chirality plays a pivotal role in shaping the system's behavior: it reduces displacement and velocity fluctuations while inducing cross-spatial correlations among different Cartesian components of velocity. These features distinguish chiral crystals from their non-chiral counterparts, leading to the emergence of net angular momentum, as predicted analytically. This angular momentum, driven by the torque generated by the chiral active force, exhibits a non-monotonic dependence on the degree of chirality. Additionally, it contributes to the entropy production rate, as revealed through a path-integral analysis. We investigate the dynamic properties of the crystal in both Fourier and real space. Chirality induces a non-dispersive peak in the displacement spectrum, which underlies the generation of angular momentum and oscillations in time-dependent autocorrelation functions or mean-square displacement, all of which are analytically predicted.
Collapse
Affiliation(s)
| | - Lorenzo Caprini
- Sapienza University of Rome, Piazzale Aldo Moro 2, Rome, Italy.
| |
Collapse
|
4
|
Fyodorov YV, Gudowska-Nowak E, Nowak MA, Tarnowski W. Nonorthogonal Eigenvectors, Fluctuation-Dissipation Relations, and Entropy Production. PHYSICAL REVIEW LETTERS 2025; 134:087102. [PMID: 40085896 DOI: 10.1103/physrevlett.134.087102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/20/2024] [Accepted: 01/30/2025] [Indexed: 03/16/2025]
Abstract
Celebrated fluctuation-dissipation theorem (FDT) linking the response function to time dependent correlations of observables measured in the reference unperturbed state is one of the central results in equilibrium statistical mechanics. In this Letter we discuss an extension of the standard FDT to the case when multidimensional matrix representing transition probabilities is strictly non-normal. This feature dramatically modifies the dynamics, by incorporating the effect of eigenvector nonorthogonality via the associated overlap matrix of Chalker-Mehlig type. In particular, the rate of entropy production per unit time is strongly enhanced by that matrix. We suggest, that this mechanism has an impact on the studies of collective phenomena in neural matrix models, leading, via transient behavior, to such phenomena as synchronization and emergence of the memory. We also expect, that the described mechanism generating the entropy production is generic for wide class of phenomena, where dynamics is driven by non-normal operators. For the case of driving by a large Ginibre matrix the entropy production rate is evaluated analytically, as well as for the Rajan-Abbott model for neural networks.
Collapse
Affiliation(s)
- Yan V Fyodorov
- King's College London, Department of Mathematics, London WC2R 2LS, United Kingdom
| | - Ewa Gudowska-Nowak
- Jagiellonian University, Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Kraków, Poland
| | - Maciej A Nowak
- Jagiellonian University, Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Kraków, Poland
| | - Wojciech Tarnowski
- Jagiellonian University, Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Kraków, Poland
| |
Collapse
|
5
|
Wittmann R, Abdoli I, Sharma A, Brader JM. Confined active particles with spatially dependent Lorentz force: An odd twist to the "best Fokker-Planck approximation". Phys Rev E 2025; 111:025412. [PMID: 40103117 DOI: 10.1103/physreve.111.025412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/14/2025] [Indexed: 03/20/2025]
Abstract
We derive a version of the so-called "best Fokker-Planck approximation" (BFPA) to describe the spatial properties of interacting active Ornstein-Uhlenbeck particles in arbitrary spatial dimensions. In doing so, we also take into account the odd-diffusive contribution of the Lorentz force acting on a charged particle in a spatially dependent magnetic field, sticking to the overdamped limit. While the BFPA itself does not turn out to be widely useful, our general approach allows us to deduce an appropriate generalization of the Fox approximation, which we use to characterize the stationary behavior of a single active particle in an external potential by deriving analytic expressions for configurational probability distributions (or effective potentials). In agreement with computer simulations, our theory predicts that the Lorentz force reduces the effective attraction and thus the probability to find an active particle in the vicinity of a repulsive wall. Even for an inhomogeneous magnetic field, our theoretical findings provide useful qualitative insights, specifically regarding the location of accumulation regions.
Collapse
Affiliation(s)
- René Wittmann
- Heinrich-Heine-Universität Düsseldorf, Institut für Theoretische Physik II: Weiche Materie, D-40225 Düsseldorf, Germany
- Max Rubner-Institut, Institut für Sicherheit und Qualität bei Fleisch, D-95326 Kulmbach, Germany
| | - Iman Abdoli
- Heinrich-Heine-Universität Düsseldorf, Institut für Theoretische Physik II: Weiche Materie, D-40225 Düsseldorf, Germany
| | - Abhinav Sharma
- Universität Augsburg, Mathematisch-Naturwissenschaftlich-Technische Fakultät, Institut für Physik, Universitätsstraße 1, D-86159 Augsburg, Germany
- Leibniz-Institut für Polymerforschung Dresden, Institut Theory der Polymere, D-01069 Dresden, Germany
| | - Joseph M Brader
- University of Fribourg, Department of Physics, CH-1700 Fribourg, Switzerland
| |
Collapse
|
6
|
Caspers J, Krüger M. Nonlinear Langevin functionals for a driven probe. J Chem Phys 2024; 161:124109. [PMID: 39319648 DOI: 10.1063/5.0227674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
When a probe particle immersed in a fluid with nonlinear interactions is subject to strong driving, the cumulants of the stochastic force acting on the probe are nonlinear functionals of the driving protocol. We present a Volterra series for these nonlinear functionals by applying nonlinear response theory in a path integral formalism, where the emerging kernels are shown to be expressed in terms of connected equilibrium correlation functions. The first cumulant is the mean force, the second cumulant characterizes the non-equilibrium force fluctuations (noise), and higher order cumulants quantify non-Gaussian fluctuations. We discuss the interpretation of this formalism in relation to Langevin dynamics. We highlight two example scenarios of this formalism. (i) For a particle driven with the prescribed trajectory, the formalism yields the non-equilibrium statistics of the interaction force with the fluid. (ii) For a particle confined in a moving trapping potential, the formalism yields the non-equilibrium statistics of the trapping force. In simulations of a model of nonlinearly interacting Brownian particles, we find that nonlinear phenomena, such as shear-thinning and oscillating noise covariance, appear in third- or second-order response, respectively.
Collapse
Affiliation(s)
- Juliana Caspers
- Institute for Theoretical Physics, Georg-August-Universität Göttingen, 37073 Göttingen, Germany
| | - Matthias Krüger
- Institute for Theoretical Physics, Georg-August-Universität Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
7
|
Ghimenti F, Berthier L, Szamel G, van Wijland F. Irreversible Boltzmann samplers in dense liquids: Weak-coupling approximation and mode-coupling theory. Phys Rev E 2024; 110:034604. [PMID: 39425341 DOI: 10.1103/physreve.110.034604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/29/2024] [Indexed: 10/21/2024]
Abstract
Exerting a nonequilibrium drive on an otherwise equilibrium Langevin process brings the dynamics out of equilibrium but can also speed up the approach to the Boltzmann steady state. Transverse forces are a minimal framework to achieve dynamical acceleration of the Boltzmann sampling. We consider a simple liquid in three space dimensions subjected to additional transverse pairwise forces, and quantify the extent to which transverse forces accelerate the dynamics. We first explore the dynamics of a tracer in a weak coupling regime describing high temperatures. The resulting acceleration is correlated with a monotonous increase of the magnitude of odd transport coefficients (mobility and diffusivity) with the amplitude of the transverse drive. We then develop a nonequilibrium version of the mode-coupling theory able to capture the effect of transverse forces, and more generally of forces created by additional degrees of freedom. Based on an analysis of transport coefficients, both odd and longitudinal, both for the collective modes and for a tracer particle, we find a systematic acceleration of the dynamics. Quantitatively, the gain, which is guaranteed throughout the ergodic phase, turns out to be a decreasing function of temperature beyond a temperature crossover, in particular as the glass transition is approached. Our theoretical results are in good agreement with available numerical results.
Collapse
|
8
|
Batton CH, Rotskoff GM. Microscopic origin of tunable assembly forces in chiral active environments. SOFT MATTER 2024; 20:4111-4126. [PMID: 38726733 DOI: 10.1039/d4sm00247d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Across a variety of spatial scales, from nanoscale biological systems to micron-scale colloidal systems, equilibrium self-assembly is entirely dictated by-and therefore limited by-the thermodynamic properties of the constituent materials. In contrast, nonequilibrium materials, such as self-propelled active matter, expand the possibilities for driving the assemblies that are inaccessible in equilibrium conditions. Recently, a number of works have suggested that active matter drives or accelerates self-organization, but the emergent interactions that arise between solutes immersed in actively driven environments are complex and poorly understood. Here, we analyze and resolve two crucial questions concerning actively driven self-assembly: (i) how, mechanistically, do active environments drive self-assembly of passive solutes? (ii) Under which conditions is this assembly robust? We employ the framework of odd hydrodynamics to theoretically explain numerical and experimental observations that chiral active matter, i.e., particles driven with a directional torque, produces robust and long-ranged assembly forces. Together, these developments constitute an important step towards a comprehensive theoretical framework for controlling self-assembly in nonequilibrium environments.
Collapse
Affiliation(s)
- Clay H Batton
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA.
| | - Grant M Rotskoff
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
9
|
Duclut C, Bo S, Lier R, Armas J, Surówka P, Jülicher F. Probe particles in odd active viscoelastic fluids: How activity and dissipation determine linear stability. Phys Rev E 2024; 109:044126. [PMID: 38755925 DOI: 10.1103/physreve.109.044126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/14/2024] [Indexed: 05/18/2024]
Abstract
Odd viscoelastic materials are constrained by fewer symmetries than their even counterparts. The breaking of these symmetries allows these materials to exhibit different features, which have attracted considerable attention in recent years. Immersing a bead in such complex fluids allows for probing their physical properties, highlighting signatures of their oddity and exploring the consequences of these broken symmetries. We present the conditions under which the activity of an odd viscoelastic fluid can give rise to linear instabilities in the motion of the probe particle, and we unveil how the features of the probe particle dynamics depend on the oddity and activity of the viscoelastic medium in which it is immersed.
Collapse
Affiliation(s)
- Charlie Duclut
- Laboratoire Physique des Cellules et Cancer (PCC), CNRS UMR 168, Institut Curie, Université PSL, Sorbonne Université, 75005 Paris, France
- Université Paris Cité, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| | - Stefano Bo
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom
| | - Ruben Lier
- Institute for Theoretical Physics, University of Amsterdam, 1090 GL Amsterdam, The Netherlands
- Dutch Institute for Emergent Phenomena (DIEP), University of Amsterdam, 1090 GL Amsterdam, The Netherlands
| | - Jay Armas
- Institute for Theoretical Physics, University of Amsterdam, 1090 GL Amsterdam, The Netherlands
- Dutch Institute for Emergent Phenomena (DIEP), University of Amsterdam, 1090 GL Amsterdam, The Netherlands
| | - Piotr Surówka
- Department of Theoretical Physics, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, 01307 Dresden, Germany
| |
Collapse
|
10
|
Chan CW, Wu D, Qiao K, Fong KL, Yang Z, Han Y, Zhang R. Chiral active particles are sensitive reporters to environmental geometry. Nat Commun 2024; 15:1406. [PMID: 38365770 PMCID: PMC10873462 DOI: 10.1038/s41467-024-45531-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/24/2024] [Indexed: 02/18/2024] Open
Abstract
Chiral active particles (CAPs) are self-propelling particles that break time-reversal symmetry by orbiting or spinning, leading to intriguing behaviors. Here, we examined the dynamics of CAPs moving in 2D lattices of disk obstacles through active Brownian dynamics simulations and granular experiments with grass seeds. We find that the effective diffusivity of the CAPs is sensitive to the structure of the obstacle lattice, a feature absent in achiral active particles. We further studied the transport of CAPs in obstacle arrays under an external field and found a reentrant directional locking effect, which can be used to sort CAPs with different activities. Finally, we demonstrated that parallelogram lattices of obstacles without mirror symmetry can separate clockwise and counter-clockwise CAPs. The mechanisms of the above three novel phenomena are qualitatively explained. As such, our work provides a basis for designing chirality-based tools for single-cell diagnosis and separation, and active particle-based environmental sensors.
Collapse
Affiliation(s)
- Chung Wing Chan
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Daihui Wu
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Kaiyao Qiao
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Kin Long Fong
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
- Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748, Garching, Germany
| | - Zhiyu Yang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Yilong Han
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Rui Zhang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR.
| |
Collapse
|