Homeier L, Lange H, Demler E, Bohrdt A, Grusdt F. Feshbach hypothesis of high-Tc superconductivity in cuprates.
Nat Commun 2025;
16:314. [PMID:
39747881 PMCID:
PMC11696692 DOI:
10.1038/s41467-024-55549-4]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Resonant interactions associated with the emergence of a bound state constitute one of the cornerstones of modern many-body physics. Here we present a Feshbach perspective on the origin of strong pairing in Fermi-Hubbard type models. We perform a theoretical analysis of interactions between spin-polaron charge carriers in doped Mott insulators, modeled by a near-resonant two-channel scattering problem, and report evidence for Feshbach-type interactions in thed x 2 - y 2 channel, consistent with the established phenomenology of cuprates. Existing experimental and numerical results on hole-doped cuprates lead us to conjecture the existence of a light, long-lived, low-energy excited state of two holes, which enables near-resonant interactions. To put our theory to a test we suggest to use coincidence angle-resolved photoemission spectroscopy (cARPES), pair-tunneling measurements or pump-probe experiments. The emergent Feshbach resonance among spin-polarons could also underlie superconductivity in other doped antiferromagnetic Mott insulators highlighting its potential as a unifying strong-coupling pairing mechanism rooted in quantum magnetism.
Collapse