1
|
Yuan S, Chen Z, Prokhorenko S, Nahas Y, Bellaiche L, Liu C, Xu B, Chen L, Das S, Martin LW. Hexagonal Close-Packed Polar-Skyrmion Lattice in Ultrathin Ferroelectric PbTiO_{3} Films. PHYSICAL REVIEW LETTERS 2023; 130:226801. [PMID: 37327425 DOI: 10.1103/physrevlett.130.226801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/24/2023] [Accepted: 05/05/2023] [Indexed: 06/18/2023]
Abstract
Polar skyrmions are topologically stable, swirling polarization textures with particlelike characteristics, which hold promise for next-generation, nanoscale logic and memory. However, the understanding of how to create ordered polar skyrmion lattice structures and how such structures respond to applied electric fields, temperature, and film thickness remains elusive. Here, using phase-field simulations, the evolution of polar topology and the emergence of a phase transition to a hexagonal close-packed skyrmion lattice is explored through the construction of a temperature-electric field phase diagram for ultrathin ferroelectric PbTiO_{3} films. The hexagonal-lattice skyrmion crystal can be stabilized under application of an external, out-of-plane electric field which carefully adjusts the delicate interplay of elastic, electrostatic, and gradient energies. In addition, the lattice constants of the polar skyrmion crystals are found to increase with film thickness, consistent with expectation from Kittel's law. Our studies pave the way for the development of novel ordered condensed matter phases assembled from topological polar textures and related emergent properties in nanoscale ferroelectrics.
Collapse
Affiliation(s)
- Shuai Yuan
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China and Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zuhuang Chen
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China and Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen 518055, China
| | - Sergei Prokhorenko
- Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Yousra Nahas
- Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Laurent Bellaiche
- Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Chenhan Liu
- Micro- and Nano-scale Thermal Measurement and Thermal Management Laboratory, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210046, People's Republic of China
| | - Bin Xu
- Institute of Theoretical and Applied Physics and School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Lang Chen
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sujit Das
- Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Lane W Martin
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
2
|
Prokhnenko O, Stein WD, Bleif HJ, Fromme M, Bartkowiak M, Wilpert T. Time-of-flight Extreme Environment Diffractometer at the Helmholtz-Zentrum Berlin. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:033102. [PMID: 25832206 DOI: 10.1063/1.4913656] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The Extreme Environment Diffractometer (EXED) is a new neutron time-of-flight instrument at the BER II research reactor at the Helmholtz-Zentrum Berlin, Germany. Although EXED is a special-purpose instrument, its early construction made it available for users as a general-purpose diffractometer. In this respect, EXED became one of the rare examples, where the performance of a time-of-flight diffractometer at a continuous source can be characterized. In this paper, we report on the design and performance of EXED with an emphasis on the unique instrument capabilities. The latter comprise variable wavelength resolution and wavelength band, control of the incoming beam divergence, the possibility to change the angular positions of detectors and their distance to the sample, and use of event recording and offline histogramming. These features combined make EXED easily tunable to the requirements of a particular problem, from conventional diffraction to small angle neutron scattering. The instrument performance is demonstrated by several reference measurements and user experiments.
Collapse
Affiliation(s)
- Oleksandr Prokhnenko
- Helmholtz-Zentrum Berlin für Materialien und Energie, Lise-Meitner-Campus, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Wolf-Dieter Stein
- Helmholtz-Zentrum Berlin für Materialien und Energie, Lise-Meitner-Campus, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Hans-Jürgen Bleif
- Helmholtz-Zentrum Berlin für Materialien und Energie, Lise-Meitner-Campus, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Michael Fromme
- Helmholtz-Zentrum Berlin für Materialien und Energie, Lise-Meitner-Campus, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Maciej Bartkowiak
- Helmholtz-Zentrum Berlin für Materialien und Energie, Lise-Meitner-Campus, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Thomas Wilpert
- Helmholtz-Zentrum Berlin für Materialien und Energie, Lise-Meitner-Campus, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| |
Collapse
|
3
|
Wang X, Hanson HA, Ling XS, Majkrzak CF, Maranville BB. Three-dimensional spatially resolved neutron diffraction from a disordered vortex lattice. J Appl Crystallogr 2011. [DOI: 10.1107/s0021889811006790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The vortex matter in bulk type II superconductors serves as a prototype system for studying the random pinning problem in condensed matter physics. Since the vortex lattice is embedded in an atomic lattice, small-angle neutron scattering (SANS) is the only technique that allows for direct structural studies. In traditional SANS methods, the scattering intensity is a measure of the structure factor averaged over the entire sample. Recent studies in vortex physics have shown that it is highly desirable to develop a SANS technique that is capable of resolving the spatial inhomogeneities in the bulk vortex state. This article reports a novel slicing neutron diffraction technique using atypical collimation and an areal detector, which allows for observing the three-dimensional disorder of the vortex matter inside an as-grown Nb single crystal.
Collapse
|
4
|
Ling XS, Park SR, McClain BA, Choi SM, Dender DC, Lynn JW. Superheating and supercooling of vortex matter in a Nb single crystal: direct evidence for a phase transition at the peak effect from neutron diffraction. PHYSICAL REVIEW LETTERS 2001; 86:712-715. [PMID: 11177919 DOI: 10.1103/physrevlett.86.712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2000] [Indexed: 05/23/2023]
Abstract
We report the first observation of a striking history dependence of the structure function of vortex matter in the peak effect regime in a Nb single crystal by using small angle neutron scattering combined with in situ magnetic susceptibility measurements. Metastable phases of vortex matter, supercooled vortex liquid and superheated vortex solid, have been identified. We interpret our results as direct structural evidence for a first-order vortex solid-liquid transition at the peak effect.
Collapse
Affiliation(s)
- X S Ling
- Department of Physics, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | | | | | |
Collapse
|
5
|
Lynn JW, Rosov N, Grigereit TE, Zhang H, Clinton TW. Lynn et al. reply. PHYSICAL REVIEW LETTERS 1995; 74:1698. [PMID: 10059098 DOI: 10.1103/physrevlett.74.1698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
6
|
Forgan EM, Cubitt R, Yethiraj M, Christen DK, Paul DM, Lee SL, Gammel PL. Comment on "Vortex dynamics and melting in niobium". PHYSICAL REVIEW LETTERS 1995; 74:1697. [PMID: 10059097 DOI: 10.1103/physrevlett.74.1697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|