1
|
Krug SL, von Lilienfeld OA. Alchemical insights into approximately quadratic energies of iso-electronic atoms. J Chem Phys 2024; 161:164308. [PMID: 39450736 DOI: 10.1063/5.0225865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Accurate quantum mechanics based predictions of property trends are so important for material design and discovery that even inexpensive approximate methods are valuable. We use the alchemical integral transform to study multi-electron atoms and to gain a better understanding of the approximately quadratic behavior of energy differences between iso-electronic atoms in their nuclear charges. Based on this, we arrive at the following simple analytical estimate of energy differences between any two iso-electronic atoms, ΔE≈-(1+2γNe-1)ΔZZ̄. Here, γ ≈ 0.3766 ± 0.0020 Ha corresponds to an empirical constant, and Ne, ΔZ, and Z̄, respectively, to electron number, nuclear charge difference, and average. We compare the formula's predictive accuracy using experimental numbers and non-relativistic, numerical results obtained via density functional theory (pbe0) for the entire periodic table up to Radon. A detailed discussion of the atomic helium-series is included.
Collapse
Affiliation(s)
- Simon León Krug
- Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany
| | - O Anatole von Lilienfeld
- Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany
- Berlin Institute for the Foundations of Learning and Data, 10587 Berlin, Germany
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, St. George Campus, Toronto, Ontario M5S 3H6, Canada
- Department of Materials Science and Engineering, University of Toronto, St. George Campus, Toronto, Ontario M5S 3E4, Canada
- Vector Institute for Artificial Intelligence, Toronto, Ontario M5G 1M1, Canada
- Department of Physics, University of Toronto, St. George Campus, Toronto, Ontario M5S 1A7, Canada
- Acceleration Consortium, University of Toronto, Toronto, Ontario M5G 1X6, Canada
| |
Collapse
|
2
|
Domenichini G. Extending the definition of atomic basis sets to atoms with fractional nuclear charge. J Chem Phys 2024; 160:124107. [PMID: 38526100 DOI: 10.1063/5.0196383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/10/2024] [Indexed: 03/26/2024] Open
Abstract
Alchemical transformations showed that perturbation theory can be applied also to changes in the atomic nuclear charges of a molecule. The alchemical path that connects two different chemical species involves the conceptualization of a non-physical system in which an atom possess a non-integer nuclear charge. A correct quantum mechanical treatment of these systems is limited by the fact that finite size atomic basis sets do not define exponents and contraction coefficients for fractional charge atoms. This paper proposes a solution to this problem and shows that a smooth interpolation of the atomic orbital coefficients and exponents across the periodic table is a convenient way to produce accurate alchemical predictions, even using small size basis sets.
Collapse
Affiliation(s)
- Giorgio Domenichini
- Faculty of Physics, University of Vienna, Kolingasse 14-16, 1090 Vienna, Austria
| |
Collapse
|
3
|
Sahre MJ, von Rudorff GF, Marquetand P, von Lilienfeld OA. Transferability of atomic energies from alchemical decomposition. J Chem Phys 2024; 160:054106. [PMID: 38341696 DOI: 10.1063/5.0187298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/09/2024] [Indexed: 02/13/2024] Open
Abstract
We study alchemical atomic energy partitioning as a method to estimate atomization energies from atomic contributions, which are defined in physically rigorous and general ways through the use of the uniform electron gas as a joint reference. We analyze quantitatively the relation between atomic energies and their local environment using a dataset of 1325 organic molecules. The atomic energies are transferable across various molecules, enabling the prediction of atomization energies with a mean absolute error of 23 kcal/mol, comparable to simple statistical estimates but potentially more robust given their grounding in the physics-based decomposition scheme. A comparative analysis with other decomposition methods highlights its sensitivity to electrostatic variations, underlining its potential as a representation of the environment as well as in studying processes like diffusion in solids characterized by significant electrostatic shifts.
Collapse
Affiliation(s)
- Michael J Sahre
- Vienna Doctoral School in Chemistry (DoSChem) and Institute of Theoretical Chemistry and Faculty of Physics, University of Vienna, 1090 Vienna, Austria
| | - Guido Falk von Rudorff
- Department of Chemistry, University Kassel, Heinrich-Plett-Str.40, 34132 Kassel, Germany
- Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Philipp Marquetand
- Faculty of Chemistry, Institute of Theoretical Chemistry, University of Vienna, Währinger Str. 17, 1090 Vienna, Austria
| | - O Anatole von Lilienfeld
- Vienna Doctoral School in Chemistry (DoSChem) and Institute of Theoretical Chemistry and Faculty of Physics, University of Vienna, 1090 Vienna, Austria
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, St. George Campus, Toronto, M5S 3H6 Ontario, Canada
- Department of Materials Science and Engineering, University of Toronto, St. George Campus, Toronto, M5S 3E4 Ontario, Canada
- Vector Institute for Artificial Intelligence, Toronto, M5S 1M1 Ontario, Canada
- ML Group, Technische Universität Berlin and Institute for the Foundations of Learning and Data, 10587 Berlin, Germany
- Berlin Institute for the Foundations of Learning and Data, 10587 Berlin, Germany
- Department of Physics, University of Toronto, St. George Campus, Toronto, M5S 1A7 Ontario, Canada
| |
Collapse
|
4
|
Shiraogawa T, Hasegawa JY. Optimization of General Molecular Properties in the Equilibrium Geometry Using Quantum Alchemy: An Inverse Molecular Design Approach. J Phys Chem A 2023; 127:4345-4353. [PMID: 37146038 DOI: 10.1021/acs.jpca.3c00205] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Inverse molecular design allows the optimization of molecules in chemical space and is promising for accelerating the development of functional molecules and materials. To design realistic molecules, it is necessary to consider geometric stability during optimization. In this work, we introduce an inverse design method that optimizes molecular properties by changing the chemical composition in the equilibrium geometry. The optimization algorithm of our recently developed molecular design method has been modified to allow molecular design for general properties at a low computational cost. The proposed method is based on quantum alchemy and does not require empirical data. We demonstrate the applicability and limitations of the present method in the optimization of the electric dipole moment and atomization energy in small chemical spaces for (BF, CO), (N2, CO), BN-doped benzene derivatives, and BN-doped butane derivatives. It was found that the optimality criteria scheme adopted for updating the molecular species yields faster convergence of the optimization and requires a less computational cost. Moreover, we also investigate and discuss the applicability of quantum alchemy to the electric dipole moment.
Collapse
Affiliation(s)
- Takafumi Shiraogawa
- Institute for Catalysis, Hokkaido University, N21, W10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Jun-Ya Hasegawa
- Institute for Catalysis, Hokkaido University, N21, W10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology, Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
5
|
Krug SL, von Rudorff GF, von Lilienfeld OA. Relative energies without electronic perturbations via alchemical integral transform. J Chem Phys 2022; 157:164109. [DOI: 10.1063/5.0111511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We show that the energy of a perturbed system can be fully recovered from the unperturbed system’s electron density. We derive an alchemical integral transform by parametrizing space in terms of transmutations, the chain rule, and integration by parts. Within the radius of convergence, the zeroth order yields the energy expansion at all orders, restricting the textbook statement by Wigner that the p-th order wave function derivative is necessary to describe the (2 p + 1)-th energy derivative. Without the need for derivatives of the electron density, this allows us to cover entire chemical neighborhoods from just one quantum calculation instead of single systems one by one. Numerical evidence presented indicates that predictive accuracy is achieved in the range of mHa for the harmonic oscillator or the Morse potential and in the range of machine accuracy for hydrogen-like atoms. Considering isoelectronic nuclear charge variations by one proton in all multi-electron atoms from He to Ne, alchemical integral transform based estimates of the relative energy deviate by only few mHa from corresponding Hartree–Fock reference numbers.
Collapse
Affiliation(s)
- Simon León Krug
- University of Vienna, Computational Materials Physics, Kolingasse 14-16, 1090 Vienna, Austria
- Machine Learning Group, Technische Universität Berlin and Institute for the Foundations of Learning and Data, 10587 Berlin, Germany
| | - Guido Falk von Rudorff
- University of Vienna, Computational Materials Physics, Kolingasse 14-16, 1090 Vienna, Austria
- Institute for Pure and Applied Mathematics (IPAM), University of California, Los Angeles, 460 Portola Plaza, Los Angeles, California 90095, USA
| | - O. Anatole von Lilienfeld
- Machine Learning Group, Technische Universität Berlin and Institute for the Foundations of Learning and Data, 10587 Berlin, Germany
- Vector Institute for Artificial Intelligence, Toronto, Ontario, M5S 1M1, Canada
- Departments of Chemistry, Materials Science and Engineering, and Physics, University of Toronto, St. George Campus, Toronto, Ontario M5S 1A7, Canada
| |
Collapse
|
6
|
Abstract
We propose to relax geometries throughout chemical compound space (CCS) using alchemical perturbation density functional theory (APDFT). APDFT refers to perturbation theory involving changes in nuclear charges within approximate solutions to Schr\"odinger's equation. We give an analytical formula to calculate the mixed second order energy derivatives with respect to both, nuclear charges and nuclear positions (named "alchemical force"), within the restricted Hartree-Fock case.We have implemented and studied the formula for its use in geometry relaxation of various reference and target molecules.We have also analysed the convergence of the alchemical force perturbation series, as well as basis set effects.Interpolating alchemically predicted energies, forces, and Hessian to a Morse potential yields more accurate geometries and equilibrium energies than when performing a standard Newton Raphson step. Our numerical predictions for small molecules including BF, CO, N2, CH$_4$, NH$_3$, H$_2$O, and HF yield mean absolute errors of of equilibrium energies and bond lengths smaller than 10 mHa and 0.01 Bohr for 4$^\text{th}$ order APDFT predictions, respectively.Our alchemical geometry relaxation still preserves the combinatorial efficiency of APDFT: Based on a single coupled perturbed Hartree Fock derivative for benzene we provide numerical predictions of equilibrium energies and relaxed structures of all the 17 iso-electronic charge-netural BN-doped mutants with averaged absolute deviations of $\sim$27 mHa and $\sim$0.12 Bohr, respectively.
Collapse
|
7
|
Abstract
Doping compounds can be considered a perturbation to the nuclear charges in a molecular Hamiltonian. Expansions of this perturbation in a Taylor series, i.e., quantum alchemy, have been used in the literature to assess millions of derivative compounds at once rather than enumerating them in costly quantum chemistry calculations. So far, it was unclear whether this series even converges for small molecules, whether it can be used for geometry relaxation, and how strong this perturbation may be to still obtain convergent numbers. This work provides numerical evidence that this expansion converges and recovers the self-consistent energy of Hartree-Fock calculations. The convergence radius of this expansion is quantified for dimer examples and systematically evaluated for different basis sets, allowing for estimates of the chemical space that can be covered by perturbing one reference calculation alone. Besides electronic energy, convergence is shown for density matrix elements, molecular orbital energies, and density profiles, even for large changes in electronic structure, e.g., transforming He3 into H6. Subsequently, mixed alchemical and spatial derivatives are used to relax H2 from the electronic structure of He alone, highlighting a path to spatially relaxed quantum alchemy. Finally, the underlying code that allows for arbitrarily accurate evaluation of restricted Hartree-Fock energies and arbitrary order derivatives is made available to support future method development.
Collapse
|
8
|
Abstract
Chemical compound space (CCS), the set of all theoretically conceivable combinations of chemical elements and (meta-)stable geometries that make up matter, is colossal. The first-principles based virtual sampling of this space, for example, in search of novel molecules or materials which exhibit desirable properties, is therefore prohibitive for all but the smallest subsets and simplest properties. We review studies aimed at tackling this challenge using modern machine learning techniques based on (i) synthetic data, typically generated using quantum mechanics based methods, and (ii) model architectures inspired by quantum mechanics. Such Quantum mechanics based Machine Learning (QML) approaches combine the numerical efficiency of statistical surrogate models with an ab initio view on matter. They rigorously reflect the underlying physics in order to reach universality and transferability across CCS. While state-of-the-art approximations to quantum problems impose severe computational bottlenecks, recent QML based developments indicate the possibility of substantial acceleration without sacrificing the predictive power of quantum mechanics.
Collapse
Affiliation(s)
- Bing Huang
- Faculty
of Physics, University of Vienna, 1090 Vienna, Austria
| | - O. Anatole von Lilienfeld
- Faculty
of Physics, University of Vienna, 1090 Vienna, Austria
- Institute
of Physical Chemistry and National Center for Computational Design
and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
9
|
von Rudorff GF, von Lilienfeld OA. Simplifying inverse materials design problems for fixed lattices with alchemical chirality. SCIENCE ADVANCES 2021; 7:eabf1173. [PMID: 34138735 PMCID: PMC8133750 DOI: 10.1126/sciadv.abf1173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/25/2021] [Indexed: 05/03/2023]
Abstract
Brute-force compute campaigns relying on demanding ab initio calculations routinely search for previously unknown materials in chemical compound space (CCS), the vast set of all conceivable stable combinations of elements and structural configurations. Here, we demonstrate that four-dimensional chirality arising from antisymmetry of alchemical perturbations dissects CCS and defines approximate ranks, which reduce its formal dimensionality and break down its combinatorial scaling. The resulting "alchemical" enantiomers have the same electronic energy up to the third order, independent of respective covalent bond topology, imposing relevant constraints on chemical bonding. Alchemical chirality deepens our understanding of CCS and enables the establishment of trends without empiricism for any materials with fixed lattices. We demonstrate the efficacy for three cases: (i) new rules for electronic energy contributions to chemical bonding; (ii) analysis of the electron density of BN-doped benzene; and (iii) ranking over 2000 and 4 million BN-doped naphthalene and picene derivatives, respectively.
Collapse
Affiliation(s)
- Guido Falk von Rudorff
- University of Vienna, Faculty of Physics, Kolingasse 14-16, 1090 Vienna, Austria
- Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - O Anatole von Lilienfeld
- University of Vienna, Faculty of Physics, Kolingasse 14-16, 1090 Vienna, Austria.
- Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
10
|
Domenichini G, von Rudorff GF, von Lilienfeld OA. Effects of perturbation order and basis set on alchemical predictions. J Chem Phys 2020; 153:144118. [PMID: 33086815 DOI: 10.1063/5.0023590] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alchemical perturbation density functional theory has been shown to be an efficient and computationally inexpensive way to explore chemical compound space. We investigate approximations made, in terms of atomic basis sets and the perturbation order, introduce an electron-density based estimate of errors of the alchemical prediction, and propose a correction for effects due to basis set incompleteness. Our numerical analysis of potential energy estimates, and resulting binding curves, is based on coupled-cluster single double (CCSD) reference results and is limited to all neutral diatomics with 14 electrons (AlH⋯NN). The method predicts binding energy, equilibrium distance, and vibrational frequencies of neighboring out-of-sample diatomics with near CCSD quality using perturbations up to the fifth order. We also discuss simultaneous alchemical mutations at multiple sites in benzene.
Collapse
Affiliation(s)
- Giorgio Domenichini
- Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Guido Falk von Rudorff
- Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - O Anatole von Lilienfeld
- Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
11
|
Hörmann NG, Andreussi O, Marzari N. Grand canonical simulations of electrochemical interfaces in implicit solvation models. J Chem Phys 2019; 150:041730. [DOI: 10.1063/1.5054580] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Nicolas G. Hörmann
- Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Oliviero Andreussi
- Department of Physics, University of North Texas, Denton, Texas 76207, USA
| | - Nicola Marzari
- Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Abstract
In silico design of new molecules and materials with desirable quantum properties by high-throughput screening is a major challenge due to the high dimensionality of chemical space. To facilitate its navigation, we present a unification of coordinate and composition space in terms of alchemical normal modes (ANMs) which result from second order perturbation theory. ANMs assume a predominantly smooth nature of chemical space and form a basis in which new compounds can be expanded and identified. We showcase the use of ANMs for the energetics of the isoelectronic series of diatomics with 14 electrons, BN doped benzene derivatives (C6-2 x(BN) xH6 with x = 0,1,2,3), predictions for over 1.8 million BN doped coronene derivatives, and genetic energy optimizations in the entire BN-doped coronene space. Using Ge lattice scans as reference, the applicability of ANMs across the periodic table is demonstrated for III-V and IV-IV semiconductors Si, Sn, SiGe, SnGe, SiSn, as well as AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, and InSb. Analysis of our results indicates simple qualitative structure property rules for estimating energetic rankings among isomers. Useful quantitative estimates can also be obtained when few atoms are changed to neighboring or lower lying elements in the periodic table. The quality of the predictions often increases with the symmetry of system chosen as reference due to cancellation of odd order terms. Rooted in perturbation theory, the ANM approach promises to generally enable unbiased compound exploration campaigns at reduced computational cost.
Collapse
Affiliation(s)
- Stijn Fias
- General Chemistry (ALGC) , Vrije Universiteit Brussel (Free University Brussels - VUB) , Pleinlaan 2 , 1050 Brussel , Belgium
- Department of Chemistry & Chemical Biology , McMaster University , Hamilton , ON , Canada L8S 4L8
| | - K Y Samuel Chang
- Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry , University of Basel , 4056 Basel , Switzerland
| | - O Anatole von Lilienfeld
- Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry , University of Basel , 4056 Basel , Switzerland
| |
Collapse
|
13
|
Cartoixà X, Palummo M, Hauge HIT, Bakkers EPAM, Rurali R. Optical Emission in Hexagonal SiGe Nanowires. NANO LETTERS 2017; 17:4753-4758. [PMID: 28654293 DOI: 10.1021/acs.nanolett.7b01441] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent advances in the synthetic growth of nanowires have given access to crystal phases that in bulk are only observed under extreme pressure conditions. Here, we use first-principles methods based on density functional theory and many-body perturbation theory to show that a suitable mixing of hexagonal Si and hexagonal Ge yields a direct bandgap with an optically permitted transition. Comparison of the calculated radiative lifetimes with typical values of nonradiative recombination mechanisms indicates that optical emission will be the dominant recombination mechanism. These findings pave the way to the development of silicon-based optoelectronic devices, thus far hindered by the poor light emission efficiency of cubic Si.
Collapse
Affiliation(s)
- Xavier Cartoixà
- Departament d'Enginyeria Electrònica, Universitat Autònoma de Barcelona , 08193 Bellaterra, Barcelona, Spain
| | - Maurizia Palummo
- Dipartimento di Fisica and INFN, Università di Roma "Tor Vergata" via della Ricerca Scientifica 1 , 00133 Roma, Italy
| | - Håkon Ikaros T Hauge
- Department of Applied Physics, TU Eindhoven , Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Erik P A M Bakkers
- Department of Applied Physics, TU Eindhoven , Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Riccardo Rurali
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de Bellaterra , 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
14
|
Solovyeva A, von Lilienfeld OA. Alchemical screening of ionic crystals. Phys Chem Chem Phys 2016; 18:31078-31091. [DOI: 10.1039/c6cp04258a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We introduce alchemical perturbations as a rapid and accurate tool to estimate fundamental structural and energetic properties in pure and mixed ionic crystals.
Collapse
Affiliation(s)
- Alisa Solovyeva
- Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials MARVEL
- Department of Chemistry
- University of Basel
- 4056 Basel
- Switzerland
| | - O. Anatole von Lilienfeld
- Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials MARVEL
- Department of Chemistry
- University of Basel
- 4056 Basel
- Switzerland
| |
Collapse
|
15
|
Hofmann F, Garg J, Maznev AA, Jandl A, Bulsara M, Fitzgerald EA, Chen G, Nelson KA. Intrinsic to extrinsic phonon lifetime transition in a GaAs-AlAs superlattice. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:295401. [PMID: 23817884 DOI: 10.1088/0953-8984/25/29/295401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We have measured the lifetimes of two zone-center longitudinal acoustic phonon modes, at 320 and 640 GHz, in a 14 nm GaAs/2 nm AlAs superlattice structure. By comparing measurements at 296 and 79 K we separate the intrinsic contribution to phonon lifetime determined by phonon-phonon scattering from the extrinsic contribution due to defects and interface roughness. At 296 K, the 320 GHz phonon lifetime has approximately equal contributions from intrinsic and extrinsic scattering, whilst at 640 GHz it is dominated by extrinsic effects. These measurements are compared with intrinsic and extrinsic scattering rates in the superlattice obtained from first-principles lattice dynamics calculations. The calculated room-temperature intrinsic lifetime of longitudinal phonons at 320 GHz is in agreement with the experimentally measured value of 0.9 ns. The model correctly predicts the transition from predominantly intrinsic to predominantly extrinsic scattering; however the predicted transition occurs at higher frequencies. Our analysis indicates that the 'interfacial atomic disorder' model is not entirely adequate and that the observed frequency dependence of the extrinsic scattering rate is likely to be determined by a finite correlation length of interface roughness.
Collapse
Affiliation(s)
- F Hofmann
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Garg J, Bonini N, Marzari N. High thermal conductivity in short-period superlattices. NANO LETTERS 2011; 11:5135-5141. [PMID: 22035188 DOI: 10.1021/nl202186y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The thermal conductivity of ideal short-period superlattices is computed using harmonic and anharmonic force constants derived from density-functional perturbation theory and by solving the Boltzmann transport equation in the single-mode relaxation time approximation, using silicon-germanium as a paradigmatic case. We show that in the limit of small superlattice period the computed thermal conductivity of the superlattice can exceed that of both the constituent materials. This is found to be due to a dramatic reduction in the scattering of acoustic phonons by optical phonons, leading to very long phonon lifetimes. By variation of the mass mismatch between the constituent materials in the superlattice, it is found that this enhancement in thermal conductivity can be engineered, providing avenues to achieve high thermal conductivities in nanostructured materials.
Collapse
Affiliation(s)
- Jivtesh Garg
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
| | | | | |
Collapse
|
17
|
Jayaraman S, Thompson AP, von Lilienfeld OA. Molten salt eutectics from atomistic simulations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:030201. [PMID: 22060319 DOI: 10.1103/physreve.84.030201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 05/10/2011] [Indexed: 05/31/2023]
Abstract
Despite their importance for solar thermal power applications, phase-diagrams of molten salt mixture heat transfer fluids (HTFs) are not readily accessible from first principles. We present a molecular dynamics scheme general enough to identify eutectics of any HTF candidate mixture. The eutectic mixture and temperature are located using the liquid mixture free energy and the pure component solid-liquid free energy differences. The liquid mixture free energy is obtained using thermodynamic integration over particle identity transmutations sampled with molecular dynamics at a single temperature. Drawbacks of conventional phase diagram mapping methodologies are avoided by not considering solid mixtures, thereby evading expensive computations of solid phase free energies. Numerical results for binary and ternary mixtures of alkali nitrates agree well with experimental measurements.
Collapse
|
18
|
Garg J, Bonini N, Kozinsky B, Marzari N. Role of disorder and anharmonicity in the thermal conductivity of silicon-germanium alloys: a first-principles study. PHYSICAL REVIEW LETTERS 2011; 106:045901. [PMID: 21405336 DOI: 10.1103/physrevlett.106.045901] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 09/12/2010] [Indexed: 05/30/2023]
Abstract
The thermal conductivity of disordered silicon-germanium alloys is computed from density-functional perturbation theory and with relaxation times that include both harmonic and anharmonic scattering terms. We show that this approach yields an excellent agreement at all compositions with experimental results and provides clear design rules for the engineering of nanostructured thermoelectrics. For Si(x)Ge(1-x), more than 50% of the heat is carried at room temperature by phonons of mean free path greater than 1 μm, and an addition of as little as 12% Ge is sufficient to reduce the thermal conductivity to the minimum value achievable through alloying. Intriguingly, mass disorder is found to increase the anharmonic scattering of phonons through a modification of their vibration eigenmodes, resulting in an increase of 15% in thermal resistivity.
Collapse
Affiliation(s)
- Jivtesh Garg
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
19
|
Shevlin SA, Curioni A, Andreoni W. Ab initio design of high-k dielectrics: La(x)Y1-xAlO3. PHYSICAL REVIEW LETTERS 2005; 94:146401. [PMID: 15904084 DOI: 10.1103/physrevlett.94.146401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Indexed: 05/02/2023]
Abstract
We use calculations based on density-functional theory in the virtual crystal approximation for the design of high-k dielectrics, which could offer an alternative to silicon dioxide in complementary metal-oxide semiconductor devices. We show that aluminates LaxY1-xAlO3 alloys derived by mixing aluminum oxide with lanthanum and yttrium oxides have unique physical attributes for a possible application as gate dielectrics when stabilized in the rhombohedral perovskite structure, and which are lost in the orthorhombic modification. Stability arguments locate this interesting composition range as 0.2<x<0.4. Phase separation in microdomains is shown to have the tendency to further enhance the dielectric constant. We propose this as a novel family of high-k dielectrics deserving experimental exploration.
Collapse
Affiliation(s)
- Stephen A Shevlin
- IBM Research, Zurich Research Laboratory, 8803 Rüschlikon, Switzerland
| | | | | |
Collapse
|
20
|
Winkler B, Pickard C, Milman V. Applicability of a quantum mechanical `virtual crystal approximation' to study Al/Si-disorder. Chem Phys Lett 2002. [DOI: 10.1016/s0009-2614(02)01029-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Asta M, Foiles SM. Embedded-atom-method effective-pair-interaction study of the structural and thermodynamic properties of Cu-Ni, Cu-Ag, and Au-Ni solid solutions. PHYSICAL REVIEW. B, CONDENSED MATTER 1996; 53:2389-2404. [PMID: 9983741 DOI: 10.1103/physrevb.53.2389] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
22
|
Fritsch J, Pavone P, Schröder U. Ab initio calculation of the phonon dispersion in bulk InP and in the InP(110) surface. PHYSICAL REVIEW. B, CONDENSED MATTER 1995; 52:11326-11334. [PMID: 9980237 DOI: 10.1103/physrevb.52.11326] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
23
|
Gonze X. Adiabatic density-functional perturbation theory. PHYSICAL REVIEW. A, ATOMIC, MOLECULAR, AND OPTICAL PHYSICS 1995; 52:1096-1114. [PMID: 9912349 DOI: 10.1103/physreva.52.1096] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
24
|
Neugebauer J. Electronic structure and phase stability of GaAs1-xNx alloys. PHYSICAL REVIEW. B, CONDENSED MATTER 1995; 51:10568-10571. [PMID: 9977751 DOI: 10.1103/physrevb.51.10568] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
25
|
Silverman A, Zunger A, Kalish R, Adler J. Atomic-scale structure of disordered Ga1-xInxP alloys. PHYSICAL REVIEW. B, CONDENSED MATTER 1995; 51:10795-10816. [PMID: 9977776 DOI: 10.1103/physrevb.51.10795] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|