1
|
Bronstein E, Faran E, Talmon R, Shilo D. Uncovering avalanche sources via acceleration measurements. Nat Commun 2024; 15:7474. [PMID: 39209854 PMCID: PMC11362599 DOI: 10.1038/s41467-024-51622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Avalanche sources describe rapid and local events that govern deformation processes in various materials. The fundamental differences between an avalanche source and its associated measured acoustic emission (AE) signal are encoded in the acoustic transfer function, which undesirably modifies the properties of the source. Consequently, information about the physical characteristics of avalanche sources is scarce and its exposure poses a great challenge. We introduce a novel experimental method based on acceleration measurements, which eliminates the effect of the transfer function and distills the avalanche source. Applying this method to deformation twinning in magnesium shows that the amplitudes and characteristic times of avalanche sources are unrelated by a clear physical law. Conversely, the amplitudes and durations of AE signals are related by a power law, which is attributed to the transfer function. Using our method, we identify and compute a new feature of avalanche sources, which is directly linked to the growth rate of the twinned volume. This feature displays a power-law distribution, implying an unpredicted behavior at dynamic criticality. Simultaneously, the characteristic times of avalanche sources possess an intrinsic upper bound, indicating a predicted limit that relates to the underlying physical process of twinning.
Collapse
Affiliation(s)
- Emil Bronstein
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
| | - Eilon Faran
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ronen Talmon
- Viterbi Faculty of Electrical and Computer Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Doron Shilo
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
2
|
Salners T, Dahmen KA, Beggs J. Simple model for the prediction of seizure durations. Phys Rev E 2024; 110:014401. [PMID: 39161021 DOI: 10.1103/physreve.110.014401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/12/2024] [Indexed: 08/21/2024]
Abstract
A simple model is used to simulate seizures in a population of spiking excitatory neurons experiencing a uniform effect from inhibitory neurons. A key feature is introduced into the model, i.e., a mechanism that weakens the firing thresholds. This weakening mechanism adds memory to the dynamics. We find a seizure-prone state in a "mode-switching" phase. In this phase, the system can suddenly switch from a "healthy" state with small scale-free avalanches to a "seizure" state with almost periodic large avalanches ("seizures"). Simulations of the model predict statistics for the average time spent in the seizure state (the seizure "duration") that agree with experiments and theoretical examples of similar behavior in neuronal systems. Our study points to. different connections between seizures and fracture and also offers an alternative view on the type of critical point controlling neuronal avalanches.
Collapse
|
3
|
Kamel SM, Daróczi L, Tóth LZ, Beke DL, Juárez GG, Cobo S, Salmon L, Molnár G, Bousseksou A. Acoustic emissions from spin crossover complexes. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:5757-5765. [PMID: 38680543 PMCID: PMC11044199 DOI: 10.1039/d4tc00495g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
Acoustic emission from the compounds [Fe(HB(tz)3)2] and [Fe(Htrz)(trz)2]BF4 was detected during the thermally induced spin transition and is correlated with simultaneously recorded calorimetric signals. We ascribe this phenomenon to elastic waves produced by microstructural and volume changes accompanying the spin transition. Despite the perfect reversibility of the spin state switching (seen by the calorimeter), the acoustic emission activity decreases for successive thermal cycles, revealing thus irreversible microstructural evolution of the samples. The acoustic emission signal amplitude and energy probability distribution functions followed power-law behavior and the characteristic exponents were found to be similar for the two samples both on heating and cooling, indicating the universal character, which is further substantiated by the well scaled average temporal shapes of the avalanches.
Collapse
Affiliation(s)
- Sarah M Kamel
- Department of Solid State Physics, Doctoral School of Physics, University of Debrecen P.O. Box 2 H-4010 Debrecen Hungary
- Physics Department, Faculty of Science Ain Shams University, Abbassia 11566 Cairo Egypt
| | - Lajos Daróczi
- Department of Solid State Physics, Doctoral School of Physics, University of Debrecen P.O. Box 2 H-4010 Debrecen Hungary
| | - László Z Tóth
- Department of Solid State Physics, Doctoral School of Physics, University of Debrecen P.O. Box 2 H-4010 Debrecen Hungary
| | - Dezső L Beke
- Department of Solid State Physics, Doctoral School of Physics, University of Debrecen P.O. Box 2 H-4010 Debrecen Hungary
| | - Gerardo Gutiérrez Juárez
- Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Universidad de Guanajuato-Campus León, Loma del Bosque 103, Loma del Campestre 37150 León Gto. Mexico
| | - Saioa Cobo
- LCC, CNRS & University of Toulouse, 205 route de Narbonne 31077 Toulouse France
| | - Lionel Salmon
- LCC, CNRS & University of Toulouse, 205 route de Narbonne 31077 Toulouse France
| | - Gábor Molnár
- LCC, CNRS & University of Toulouse, 205 route de Narbonne 31077 Toulouse France
| | - Azzedine Bousseksou
- LCC, CNRS & University of Toulouse, 205 route de Narbonne 31077 Toulouse France
| |
Collapse
|
4
|
Spasojević D, Marinković M, Jovković D, Janićević S, Laurson L, Djordjević A. Barkhausen noise in disordered striplike ferromagnets: Experiment versus simulations. Phys Rev E 2024; 109:024110. [PMID: 38491707 DOI: 10.1103/physreve.109.024110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/29/2024] [Indexed: 03/18/2024]
Abstract
In this work, we present a systematic comparison of the results obtained from the low-frequency Barkhausen noise recordings in nanocrystalline samples with those from the numerical simulations of the random-field Ising model systems. We performed measurements at room temperature on a field-driven metallic glass stripe made of VITROPERM 800 R, a nanocrystalline iron-based material with an excellent combination of soft and magnetic properties, making it a cutting-edge material for a wide range of applications. Given that the Barkhausen noise emissions emerging along a hysteresis curve are stochastic and depend in general on a variety of factors (such as distribution of disorder due to impurities or defects, varied size of crystal grains, type of domain structure, driving rate of the external magnetic field, sample shape and temperature, etc.), adequate theoretical modeling is essential for their interpretation and prediction. Here the Random field Ising model, specifically its athermal nonequilibrium version with the finite driving rate, stands out as an appropriate choice due to the material's nanocrystalline structure and high Curie temperature. We performed a systematic analysis of the signal properties and magnetization avalanches comparing the outcomes of the numerical model and experiments carried out in a two-decade-wide range of the external magnetic field driving rates. Our results reveal that with a suitable choice of parameters, a considerable match with the experimental results is achieved, indicating that this model can accurately describe the Barkhausen noise features in nanocrystalline samples.
Collapse
Affiliation(s)
- Djordje Spasojević
- Faculty of Physics, University of Belgrade, P. O. Box 44, 11001 Belgrade, Republic of Serbia
| | - Miloš Marinković
- Faculty of Physics, University of Belgrade, P. O. Box 44, 11001 Belgrade, Republic of Serbia
| | - Dragutin Jovković
- Faculty of Mining and Geology, University of Belgrade, P. O. Box 162, 11000 Belgrade, Republic of Serbia
| | - Sanja Janićević
- Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Republic of Serbia
| | - Lasse Laurson
- Computational Physics Laboratory, Tampere University, P. O. Box 692, FI-33014 Tampere, Finland
| | - Antonije Djordjević
- School of Electrical Engineering, University of Belgrade, 11000 Belgrade, Republic of Serbia and Serbian Academy of Sciences and Arts, 11000 Belgrade, Republic of Serbia
| |
Collapse
|
5
|
Richard D, Elgailani A, Vandembroucq D, Manning ML, Maloney CE. Mechanical excitation and marginal triggering during avalanches in sheared amorphous solids. Phys Rev E 2023; 107:034902. [PMID: 37072969 DOI: 10.1103/physreve.107.034902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 02/26/2023] [Indexed: 04/20/2023]
Abstract
We study plastic strain during individual avalanches in overdamped particle-scale molecular dynamics (MD) and mesoscale elastoplastic models (EPM) for amorphous solids sheared in the athermal quasistatic limit. We show that the spatial correlations in plastic activity exhibit a short length scale that grows as t^{3/4} in MD and ballistically in EPM, which is generated by mechanical excitation of nearby sites not necessarily close to their stability thresholds, and a longer lengthscale that grows diffusively for both models and is associated with remote marginally stable sites. These similarities in spatial correlations explain why simple EPMs accurately capture the size distribution of avalanches observed in MD, though the temporal profiles and dynamical critical exponents are quite different.
Collapse
Affiliation(s)
- D Richard
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam, Netherlands
- Department of Physics and BioInspired Institute, Syracuse University, Syracuse, New York 13244, USA
- Univiversité Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - A Elgailani
- Northeastern University, Boston, Massachusetts 02115, USA
| | - D Vandembroucq
- PMMH, CNRS UMR 7636, ESPCI Paris, PSL University, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - M L Manning
- Department of Physics and BioInspired Institute, Syracuse University, Syracuse, New York 13244, USA
| | - C E Maloney
- Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
6
|
Ter Burg C, Bohn F, Durin G, Sommer RL, Wiese KJ. Force Correlations in Disordered Magnets. PHYSICAL REVIEW LETTERS 2022; 129:107205. [PMID: 36112461 DOI: 10.1103/physrevlett.129.107205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
We present a proof of principle for the validity of the functional renormalization group, by measuring the force correlations in Barkhausen-noise experiments. Our samples are soft ferromagnets in two distinct universality classes, differing in the range of spin interactions, and the effects of eddy currents. We show that the force correlations have a universal form predicted by the functional renormalization group, distinct for short-range and long-range elasticity, and mostly independent of eddy currents. In all cases correlations grow linearly at small distances, as in mean-field models, but in contrast to the latter are bounded at large distances. As a consequence, avalanches are anti-correlated. We derive bounds for these anticorrelations, which are saturated in the experiments, showing that the multiple domain walls in our samples effectively behave as a single wall.
Collapse
Affiliation(s)
- Cathelijne Ter Burg
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, 24 rue Lhomond, 75005 Paris, France
| | - Felipe Bohn
- Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN, Brazil
| | - Gianfranco Durin
- Istituto Nazionale di Ricerca Metrologica, strada delle Cacce 91, 10135 Torino, Italy
| | - Rubem Luis Sommer
- Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Urca, 22290-180 Rio de Janeiro, RJ, Brazil
| | - Kay Jörg Wiese
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
7
|
Denouement of the Energy-Amplitude and Size-Amplitude Enigma for Acoustic-Emission Investigations of Materials. MATERIALS 2022; 15:ma15134556. [PMID: 35806681 PMCID: PMC9267350 DOI: 10.3390/ma15134556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023]
Abstract
There are many systems producing crackling noise (avalanches) in materials. Temporal shapes of avalanches, U(t) (U is the detected voltage signal, t is the time), have self-similar behaviour and the normalized U(t) function (e.g., dividing both the values of U and t by S1/2, where S is the avalanche area), averaged for fixed S, should be the same, independently of the type of materials or avalanche mechanisms. However, there are experimental evidences that the temporal shapes of avalanches do not scale completely in a universal way. The self-similarity also leads to universal power-law-scaling relations, e.g., between the energy, E, and the peak amplitude, Am, or between S and Am. There are well-known enigmas, where the above exponents in acoustic emission measurements are rather close to 2 and 1, respectively, instead of E~Am3 and S~Am2, obtained from the mean field theory, MFT. We show, using a theoretically predicted averaged function for the fixed avalanche area, U(t)=atexp(−bt2) (where a and b are non-universal, material-dependent constants), that the scaling exponents can be different from the MFT values. Normalizing U by Am and t by tm (the time belonging to the Am: rise time), we obtain tm~Am1−φ (the MFT values can be obtained only if φ would be zero). Here, φ is expected to be material-independent and to be the same for the same mechanism. Using experimental results on martensitic transformations in two different shape-memory single-crystals, φ = 0.8 ± 0.1 was obtained (φ is the same for both alloys). Thus, dividing U by Am as well as t by Am1−φ (~tm) leads to the same common, normalized temporal shape for different, fixed values of S. This normalization can also be used in general for other experimental results (not only for acoustic emission), which provide information about jerky noises in materials.
Collapse
|
8
|
Batool A, Danku Z, Pál G, Kun F. Temporal evolution of failure avalanches of the fiber bundle model on complex networks. CHAOS (WOODBURY, N.Y.) 2022; 32:063121. [PMID: 35778115 DOI: 10.1063/5.0089634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
We investigate how the interplay of the topology of the network of load transmitting connections and the amount of disorder of the strength of the connected elements determines the temporal evolution of failure cascades driven by the redistribution of load following local failure events. We use the fiber bundle model of materials' breakdown assigning fibers to the sites of a square lattice, which is then randomly rewired using the Watts-Strogatz technique. Gradually increasing the rewiring probability, we demonstrate that the bundle undergoes a transition from the localized to the mean field universality class of breakdown phenomena. Computer simulations revealed that both the size and the duration of failure cascades are power law distributed on all network topologies with a crossover between two regimes of different exponents. The temporal evolution of cascades is described by a parabolic profile with a right handed asymmetry, which implies that cascades start slowly, then accelerate, and eventually stop suddenly. The degree of asymmetry proved to be characteristic of the network topology gradually decreasing with increasing rewiring probability. Reducing the variance of fibers' strength, the exponents of the size and the duration distribution of cascades increase in the localized regime of the failure process, while the localized to mean field transition becomes more abrupt. The consistency of the results is supported by a scaling analysis relating the characteristic exponents of the statistics and dynamics of cascades.
Collapse
Affiliation(s)
- Attia Batool
- Department of Theoretical Physics, Doctoral School of Physics, Faculty of Science and Technology, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Zsuzsa Danku
- Department of Theoretical Physics, Doctoral School of Physics, Faculty of Science and Technology, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Gergő Pál
- Department of Theoretical Physics, Doctoral School of Physics, Faculty of Science and Technology, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Ferenc Kun
- Department of Theoretical Physics, Doctoral School of Physics, Faculty of Science and Technology, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| |
Collapse
|
9
|
Vincent-Dospital T, Cochard A, Santucci S, Måløy KJ, Toussaint R. Thermally activated intermittent dynamics of creeping crack fronts along disordered interfaces. Sci Rep 2021; 11:20418. [PMID: 34650113 PMCID: PMC8516960 DOI: 10.1038/s41598-021-98556-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/03/2021] [Indexed: 12/02/2022] Open
Abstract
We present a subcritical fracture growth model, coupled with the elastic redistribution of the acting mechanical stress along rugous rupture fronts. We show the ability of this model to quantitatively reproduce the intermittent dynamics of cracks propagating along weak disordered interfaces. To this end, we assume that the fracture energy of such interfaces (in the sense of a critical energy release rate) follows a spatially correlated normal distribution. We compare various statistical features from the obtained fracture dynamics to that from cracks propagating in sintered polymethylmethacrylate (PMMA) interfaces. In previous works, it has been demonstrated that such an approach could reproduce the mean advance of fractures and their local front velocity distribution. Here, we go further by showing that the proposed model also quantitatively accounts for the complex self-affine scaling morphology of crack fronts and their temporal evolution, for the spatial and temporal correlations of the local velocity fields and for the avalanches size distribution of the intermittent growth dynamics. We thus provide new evidence that an Arrhenius-like subcritical growth is particularly suitable for the description of creeping cracks.
Collapse
Affiliation(s)
- Tom Vincent-Dospital
- ITES UMR 7063, Université de Strasbourg, 67084, Strasbourg, France.
- SFF Porelab, The Njord Centre, Department of physics, University of Oslo, Oslo, Norway.
| | - Alain Cochard
- ITES UMR 7063, Université de Strasbourg, 67084, Strasbourg, France.
| | - Stéphane Santucci
- ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, Université de Lyon, Lyon, France
- Lavrentyev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Knut Jørgen Måløy
- SFF Porelab, The Njord Centre, Department of physics, University of Oslo, Oslo, Norway
| | - Renaud Toussaint
- ITES UMR 7063, Université de Strasbourg, 67084, Strasbourg, France.
- SFF Porelab, The Njord Centre, Department of physics, University of Oslo, Oslo, Norway.
| |
Collapse
|
10
|
Jovković D, Janićević S, Mijatović S, Laurson L, Spasojević D. Effects of external noise on threshold-induced correlations in ferromagnetic systems. Phys Rev E 2021; 103:062114. [PMID: 34271613 DOI: 10.1103/physreve.103.062114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/17/2021] [Indexed: 11/07/2022]
Abstract
In the present paper we investigate the impact of the external noise and detection threshold level on the simulation data for the systems that evolve through metastable states. As a representative model of such systems we chose the nonequilibrium athermal random-field Ising model with two types of the external noise, uniform white noise and Gaussian white noise with various different standard deviations, imposed on the original response signal obtained in model simulations. We applied a wide range of detection threshold levels in analysis of the signal and show how these quantities affect the values of exponent γ_{S/T} (describing the scaling of the average avalanche size with duration), the shift of waiting time between the avalanches, and finally the collapses of the waiting time distributions. The results are obtained via extensive numerical simulations on the equilateral three-dimensional cubic lattices of various sizes and disorders.
Collapse
Affiliation(s)
- Dragutin Jovković
- Faculty of Mining and Geology, University of Belgrade, P.O. Box 162, 11000 Belgrade, Serbia
| | - Sanja Janićević
- Faculty of Science, University of Kragujevac, P.O. Box 60, 34000 Kragujevac, Serbia
| | - Svetislav Mijatović
- Faculty of Physics, University of Belgrade, P.O. Box 44, 11001 Belgrade, Serbia
| | - Lasse Laurson
- Computational Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Djordje Spasojević
- Faculty of Physics, University of Belgrade, P.O. Box 44, 11001 Belgrade, Serbia
| |
Collapse
|
11
|
Ter Burg C, Wiese KJ. Mean-field theories for depinning and their experimental signatures. Phys Rev E 2021; 103:052114. [PMID: 34134250 DOI: 10.1103/physreve.103.052114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Mean-field theory is an approximation replacing an extended system by a few variables. For depinning of elastic manifolds, these are the position u of its center of mass and the statistics of the forces F(u). There are two proposals how to model the latter: as a random walk (ABBM model), or as uncorrelated forces at integer u (discretized particle model, DPM). While for many experiments the ABBM model (in the literature misleadingly equated with mean-field theory) makes quantitatively correct predictions for the distributions of velocities, or avalanche size and duration, the microscopic disorder force-force correlations cannot grow linearly, and thus unboundedly as a random walk, with distance. Even the effective (renormalized) disorder forces which do so at small distances are bounded at large distances. To describe both regimes, we model forces as an Ornstein-Uhlenbeck process. The latter has the statistics of a random walk at small scales, and is uncorrelated at large scales. By connecting to results in both limits, we solve the model largely analytically, allowing us to describe in all regimes the distributions of velocity, avalanche size, and duration. To establish experimental signatures of this transition, we study the response function, and the correlation function of position u, velocity u[over ̇], and forces F under slow driving with velocity v>0. While at v=0 force or position correlations have a cusp at the origin and then decay at least exponentially fast to zero, this cusp is rounded at a finite driving velocity. We give a detailed analytic analysis for this rounding by velocity, which allows us, given experimental data, to extract the timescale of the response function, and to reconstruct the force-force correlator at v=0. The latter is the central object of the field theory, and as such contains detailed information about the universality class in question. We test our predictions by careful numerical simulations extending over up to ten orders in magnitude.
Collapse
Affiliation(s)
- Cathelijne Ter Burg
- Laboratoire de Physique de l'Ećole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, 24 rue Lhomond, 75005 Paris, France
| | - Kay Jörg Wiese
- Laboratoire de Physique de l'Ećole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
12
|
Tückmantel P, Gaponenko I, Caballero N, Agar JC, Martin LW, Giamarchi T, Paruch P. Local Probe Comparison of Ferroelectric Switching Event Statistics in the Creep and Depinning Regimes in Pb(Zr_{0.2}Ti_{0.8})O_{3} Thin Films. PHYSICAL REVIEW LETTERS 2021; 126:117601. [PMID: 33798378 DOI: 10.1103/physrevlett.126.117601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/28/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Ferroelectric materials provide a useful model system to explore the jerky, highly nonlinear dynamics of elastic interfaces in disordered media. The distribution of nanoscale switching event sizes is studied in two Pb(Zr_{0.2}Ti_{0.8})O_{3} thin films with different disorder landscapes using piezoresponse force microscopy. While the switching event statistics show the expected power-law scaling, significant variations in the value of the scaling exponent τ are seen, possibly as a consequence of the different intrinsic disorder landscapes in the samples and of further alterations under high tip bias applied during domain writing. Importantly, higher exponent values (1.98-2.87) are observed when crackling statistics are acquired only for events occurring in the creep regime. The exponents are systematically lowered when all events across both creep and depinning regimes are considered-the first time such a distinction is made in studies of ferroelectric materials. These results show that distinguishing the two regimes is of crucial importance, significantly affecting the exponent value and potentially leading to incorrect assignment of universality class.
Collapse
Affiliation(s)
- Philippe Tückmantel
- Department of Quantum Matter Physics, University of Geneva, CH-1211, Geneva, Switzerland
| | - Iaroslav Gaponenko
- Department of Quantum Matter Physics, University of Geneva, CH-1211, Geneva, Switzerland
| | - Nirvana Caballero
- Department of Quantum Matter Physics, University of Geneva, CH-1211, Geneva, Switzerland
| | - Joshua C Agar
- Department of Material Science and Engineering, University of California, Berkeley, California 94720, USA
| | - Lane W Martin
- Department of Material Science and Engineering, University of California, Berkeley, California 94720, USA
| | - Thierry Giamarchi
- Department of Quantum Matter Physics, University of Geneva, CH-1211, Geneva, Switzerland
| | - Patrycja Paruch
- Department of Quantum Matter Physics, University of Geneva, CH-1211, Geneva, Switzerland
| |
Collapse
|
13
|
Mäkinen T, Karppinen P, Ovaska M, Laurson L, Alava MJ. Propagating bands of plastic deformation in a metal alloy as critical avalanches. SCIENCE ADVANCES 2020; 6:6/41/eabc7350. [PMID: 33028532 PMCID: PMC7541064 DOI: 10.1126/sciadv.abc7350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
The plastic deformation of metal alloys localizes in the Portevin-Le Chatelier effect in bands of different types, including propagating, or type "A" bands, usually characterized by their width and a typical propagation velocity. This plastic instability arises from collective dynamics of dislocations interacting with mobile solute atoms, but the resulting sensitivity to the strain rate lacks fundamental understanding. Here, we show, by using high-resolution imaging in tensile deformation experiments of an aluminum alloy, that the band velocities exhibit large fluctuations. Each band produces a velocity signal reminiscent of crackling noise bursts observed in numerous driven avalanching systems from propagating cracks in fracture to the Barkhausen effect in ferromagnets. The statistical features of these velocity bursts including their average shapes and size distributions obey predictions of a simple mean-field model of critical avalanche dynamics. Our results thus reveal a previously unknown paradigm of criticality in the localization of deformation.
Collapse
Affiliation(s)
- Tero Mäkinen
- Department of Applied Physics, Aalto University, P.O. Box 11100, FI-00076 Aalto, Espoo, Finland.
| | - Pasi Karppinen
- ProtoRhino Ltd, Betonimiehenkuja 5C, FI-02150 Espoo, Finland
| | - Markus Ovaska
- Department of Applied Physics, Aalto University, P.O. Box 11100, FI-00076 Aalto, Espoo, Finland
| | - Lasse Laurson
- Computational Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Mikko J Alava
- Department of Applied Physics, Aalto University, P.O. Box 11100, FI-00076 Aalto, Espoo, Finland
- NOMATEN Centre of Excellence, National Centre of Nuclear Research, A. Soltana 7, 05-400 Otwock-Świerk, Poland
| |
Collapse
|
14
|
Mijatović S, Branković M, Graovac S, Spasojević D. Avalanche properties in striplike ferromagnetic systems. Phys Rev E 2020; 102:022124. [PMID: 32942372 DOI: 10.1103/physreve.102.022124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/24/2020] [Indexed: 11/07/2022]
Abstract
We present numerical findings on the behavior of the athermal nonequilibrium random-field Ising model of spins at the thin striplike L_{1}×L_{2}×L_{3} cubic lattices with L_{1}<L_{2}<L_{3}. Changing of system sizes highly influences the evolution and shape of avalanches. The smallest avalanches [classified as three-dimension- (3D) like] are unaffected by the system boundaries, the larger are sandwiched between the top and bottom system faces so are 2D-like, while the largest are extended over the system lateral cross section and propagate along the length L_{3} like in 1D systems. Such a structure of avalanches causes double power-law distributions of their size, duration, and energy with larger effective critical exponent corresponding to 3D-like and smaller to 2D-like avalanches. The distributions scale with thickness L_{1} and are collapsible following the proposed scaling predictions which, together with the distributions' shape, might be important for analysis of the Barkhausen noise experimental data for striplike samples. Finally, the impact of system size on external field that triggers the largest avalanche for a given disorder is presented and discussed.
Collapse
Affiliation(s)
- Svetislav Mijatović
- Faculty of Physics, University of Belgrade, P. O. Box 44, 11001 Belgrade, Serbia
| | - Milica Branković
- Faculty of Physics, University of Belgrade, P. O. Box 44, 11001 Belgrade, Serbia
| | - Stefan Graovac
- Faculty of Physics, University of Belgrade, P. O. Box 44, 11001 Belgrade, Serbia
| | - Djordje Spasojević
- Faculty of Physics, University of Belgrade, P. O. Box 44, 11001 Belgrade, Serbia
| |
Collapse
|
15
|
Le Doussal P, Thiery T. Correlations between avalanches in the depinning dynamics of elastic interfaces. Phys Rev E 2020; 101:032108. [PMID: 32289984 DOI: 10.1103/physreve.101.032108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 02/04/2020] [Indexed: 11/07/2022]
Abstract
We study the correlations between avalanches in the depinning dynamics of elastic interfaces driven on a random substrate. In the mean-field theory (the Brownian force model), it is known that the avalanches are uncorrelated. Here we obtain a simple field theory which describes the first deviations from this uncorrelated behavior in a ε=d_{c}-d expansion below the upper critical dimension d_{c} of the model. We apply it to calculate the correlations between (i) avalanche sizes (ii) avalanche dynamics in two successive avalanches, or more generally, in two avalanches separated by a uniform displacement W of the interface. For (i) we obtain the correlations of the total sizes, of the local sizes, and of the total sizes with given seeds (starting points). For (ii) we obtain the correlations of the velocities, of the durations, and of the avalanche shapes. In general we find that the avalanches are anticorrelated, the occurrence of a larger avalanche making more likely the occurrence of a smaller one, and vice versa. Examining the universality of our results leads us to conjecture several exact scaling relations for the critical exponents that characterize the different distributions of correlations. The avalanche size predictions are confronted to numerical simulations for a d=1 interface with short range elasticity. They are also compared to our recent related work on static avalanches (shocks). Finally we show that the naive extrapolation of our result into the thermally activated creep regime at finite temperature predicts strong positive correlations between the forward motion events, as recently observed in numerical simulations.
Collapse
Affiliation(s)
- Pierre Le Doussal
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, 24 rue Lhomond, 75005 Paris, France
| | | |
Collapse
|
16
|
Najafi MN, Cheraghalizadeh J, Luković M, Herrmann HJ. Geometry-induced nonequilibrium phase transition in sandpiles. Phys Rev E 2020; 101:032116. [PMID: 32289889 DOI: 10.1103/physreve.101.032116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/29/2020] [Indexed: 11/07/2022]
Abstract
We study the sandpile model on three-dimensional spanning Ising clusters with the temperature T treated as the control parameter. By analyzing the three-dimensional avalanches and their two-dimensional projections (which show scale-invariant behavior for all temperatures), we uncover two universality classes with different exponents (an ordinary BTW class, and SOC_{T=∞}), along with a tricritical point (at T_{c}, the critical temperature of the host) between them. The transition between these two criticalities is induced by the transition in the support. The SOC_{T=∞} universality class is characterized by the exponent of the avalanche size distribution τ^{T=∞}=1.27±0.03, consistent with the exponent of the size distribution of the Barkhausen avalanches in amorphous ferromagnets Durin and Zapperi [Phys. Rev. Lett. 84, 4705 (2000)PRLTAO0031-900710.1103/PhysRevLett.84.4705]. The tricritical point is characterized by its own critical exponents. In addition to the avalanche exponents, some other quantities like the average height, the spanning avalanche probability (SAP), and the average coordination number of the Ising clusters change significantly the behavior at this point, and also exhibit power-law behavior in terms of ε≡T-T_{c}/T_{c}, defining further critical exponents. Importantly, the finite-size analysis for the activity (number of topplings) per site shows the scaling behavior with exponents β=0.19±0.02 and ν=0.75±0.05. A similar behavior is also seen for the SAP and the average avalanche height. The fractal dimension of the external perimeter of the two-dimensional projections of avalanches is shown to be robust against T with the numerical value D_{f}=1.25±0.01.
Collapse
Affiliation(s)
- M N Najafi
- Department of Physics, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran
| | - J Cheraghalizadeh
- Department of Physics, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran
| | - M Luković
- Computational Physics, IfB, ETH Zurich, Stefano-Franscini-Platz 3, CH-8093 Zurich, Switzerland.,Cellulose and Wood Materials, Empa Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - H J Herrmann
- ESPCI, CNRS UMR 7636 - Laboratoire PMMH, F-75005 Paris, France
| |
Collapse
|
17
|
Barés J, Bonamy D, Rosso A. Seismiclike organization of avalanches in a driven long-range elastic string as a paradigm of brittle cracks. Phys Rev E 2019; 100:023001. [PMID: 31574622 DOI: 10.1103/physreve.100.023001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Indexed: 11/07/2022]
Abstract
Crack growth in heterogeneous materials sometimes exhibits crackling dynamics, made of successive impulselike events with specific scale-invariant time and size organization reminiscent of earthquakes. Here, we examine this dynamics in a model which identifies the crack front with a long-range elastic line driven in a random potential. We demonstrate that, under some circumstances, fracture grows intermittently, via scale-free impulse organized into aftershock sequences obeying the fundamental laws of statistical seismology. We examine the effects of the driving rate and system overall stiffness (unloading factor) onto the scaling exponents and cutoffs associated with the time and size organization. We unravel the specific conditions required to observe a seismiclike organization in the crack propagation problem. Beyond failure problems, implications of these results to other crackling systems are finally discussed.
Collapse
Affiliation(s)
- Jonathan Barés
- Laboratoire de Mécanique et Génie Civil, Université de Montpellier, CNRS, Montpellier, France
| | - Daniel Bonamy
- SPEC/SPHYNX, DSM/IRAMIS CEA Saclay, Bat. 772, F-91191 Gif-sur-Yvette, France
| | - Alberto Rosso
- LPTMS, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
18
|
Pelusi F, Sbragaglia M, Benzi R. Avalanche statistics during coarsening dynamics. SOFT MATTER 2019; 15:4518-4524. [PMID: 31098607 DOI: 10.1039/c9sm00332k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We study the coarsening dynamics of a two-dimensional system via numerical simulations. The system under consideration is a biphasic system consisting of domains of a dispersed phase closely packed together in a continuous phase and separated by thin interfaces. Such a system is elastic and typically out of equilibrium. The equilibrium state is attained via the coarsening dynamics, wherein the dispersed phase slowly diffuses through the interfaces, causing the domains to change in size and eventually rearrange abruptly. The effect of rearrangements is propagated throughout the system via the intrinsic elastic interactions and may cause rearrangements elsewhere, resulting in intermittent bursts of activity and avalanche behaviour. Here we aim at quantitatively characterizing the corresponding avalanche statistics (i.e. size, duration, and inter-avalanche time). Despite the coarsening dynamics is triggered by an internal driving mechanism, we find quantitative indications that such avalanche statistics displays scaling-laws very similar to those observed in the response of disordered materials to external loads.
Collapse
Affiliation(s)
- Francesca Pelusi
- Dipartimento di Fisica, Università di Roma "Tor Vergata" and INFN, Via della Ricerca Scientifica, 1, 00133 Roma RM, Italy.
| | | | | |
Collapse
|
19
|
Abstract
Many systems crackle, from earthquakes and financial markets to Barkhausen effect in ferromagnetic materials. Despite the diversity in essence, the noise emitted in these dynamical systems consists of avalanche-like events with broad range of sizes and durations, characterized by power-law avalanche distributions and typical average avalanche shape that are fingerprints describing the universality class of the underlying avalanche dynamics. Here we focus on the crackling noise in ferromagnets and scrutinize the traditional statistics of Barkhausen avalanches in polycrystalline and amorphous ferromagnetic films having different thicknesses. We show how scaling exponents and average shape of the avalanches evolve with the structural character of the materials and film thickness. We find quantitative agreement between experiment and theoretical predictions of models for the magnetic domain wall dynamics, and then elucidate the universality classes of Barkhausen avalanches in ferromagnetic films. Thereby, we observe for the first time the dimensional crossover in the domain wall dynamics and the outcomes of the interplay between system dimensionality and range of interactions governing the domain wall dynamics on Barkhausen avalanches.
Collapse
|
20
|
Nampoothiri JN, Ramola K, Sabhapandit S, Chakraborty B. Gaps between avalanches in one-dimensional random-field Ising models. Phys Rev E 2018; 96:032107. [PMID: 29347021 DOI: 10.1103/physreve.96.032107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Indexed: 11/07/2022]
Abstract
We analyze the statistics of gaps (ΔH) between successive avalanches in one-dimensional random-field Ising models (RFIMs) in an external field H at zero temperature. In the first part of the paper we study the nearest-neighbor ferromagnetic RFIM. We map the sequence of avalanches in this system to a nonhomogeneous Poisson process with an H-dependent rate ρ(H). We use this to analytically compute the distribution of gaps P(ΔH) between avalanches as the field is increased monotonically from -∞ to +∞. We show that P(ΔH) tends to a constant C(R) as ΔH→0^{+}, which displays a nontrivial behavior with the strength of disorder R. We verify our predictions with numerical simulations. In the second part of the paper, motivated by avalanche gap distributions in driven disordered amorphous solids, we study a long-range antiferromagnetic RFIM. This model displays a gapped behavior P(ΔH)=0 up to a system size dependent offset value ΔH_{off}, and P(ΔH)∼(ΔH-ΔH_{off})^{θ} as ΔH→H_{off}^{+}. We perform numerical simulations on this model and determine θ≈0.95(5). We also discuss mechanisms which would lead to a nonzero exponent θ for general spin models with quenched random fields.
Collapse
Affiliation(s)
- Jishnu N Nampoothiri
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Kabir Ramola
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | - Bulbul Chakraborty
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA
| |
Collapse
|
21
|
Abstract
In disordered elastic systems, driven by displacing a parabolic confining potential adiabatically slowly, all advance of the system is in bursts, termed avalanches. Avalanches have a finite extension in time, which is much smaller than the waiting time between them. Avalanches also have a finite extension ℓ in space, i.e., only a part of the interface of size ℓ moves during an avalanche. Here we study their spatial shape 〈S(x)〉_{ℓ} given ℓ, as well as its fluctuations encoded in the second cumulant 〈S^{2}(x)〉_{ℓ}^{c}. We establish scaling relations governing the behavior close to the boundary. We then give analytic results for the Brownian force model, in which the microscopic disorder for each degree of freedom is a random walk. Finally, we confirm these results with numerical simulations. To do this properly we elucidate the influence of discretization effects, which also confirms the assumptions entering into the scaling ansatz. This allows us to reach the scaling limit already for avalanches of moderate size. We find excellent agreement for the universal shape and its fluctuations, including all amplitudes.
Collapse
Affiliation(s)
- Zhaoxuan Zhu
- CNRS, Laboratoire de Physique Théorique, École Normale Supérieure, PSL Research University, Sorbonne Universités, UPMC, 24 Rue Lhomond, 75005 Paris, France
| | - Kay Jörg Wiese
- CNRS, Laboratoire de Physique Théorique, École Normale Supérieure, PSL Research University, Sorbonne Universités, UPMC, 24 Rue Lhomond, 75005 Paris, France
| |
Collapse
|
22
|
Lima GZDS, Corso G, Correa MA, Sommer RL, Ivanov PC, Bohn F. Universal temporal characteristics and vanishing of multifractality in Barkhausen avalanches. Phys Rev E 2017; 96:022159. [PMID: 28950597 DOI: 10.1103/physreve.96.022159] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Indexed: 06/07/2023]
Abstract
Barkhausen effect in ferromagnetic materials provides an excellent area for investigating scaling phenomena found in disordered systems exhibiting crackling noise. The critical dynamics is characterized by random pulses or avalanches with scale-invariant properties, power-law distributions, and universal features. However, the traditional Barkhausen avalanches statistics may not be sufficient to fully characterize the complex temporal correlation of the magnetic domain walls dynamics. Here we focus on the multifractal scenario to quantify the temporal scaling characteristics of Barkhausen avalanches in polycrystalline and amorphous ferromagnetic films with thicknesses from 50 to 1000 nm. We show that the multifractal properties are dependent on film thickness, although they seem to be insensitive to the structural character of the materials. Moreover, we observe for the first time the vanishing of the multifractality in the domain walls dynamics. As the thickness is reduced, the multifractal behavior gives place to a monofractal one over the entire range of time scales. This reorganization in the temporal scaling characteristics of Barkhausen avalanches is understood as a universal restructuring associated to the dimensional crossover, from three- to two-dimensional magnetization dynamics.
Collapse
Affiliation(s)
- G Z Dos Santos Lima
- Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, 59078-970 Natal, RN, Brazil
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59078-970 Natal, RN, Brazil
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| | - G Corso
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59078-970 Natal, RN, Brazil
| | - M A Correa
- Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN, Brazil
| | - R L Sommer
- Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Urca, 22290-180 Rio de Janeiro, RJ, Brazil
| | - P Ch Ivanov
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, Massachusetts 02215, USA
- Harvard Medical School and Division of Sleep Medicine, Brigham and Women Hospital, Boston, Massachusetts 02115, USA
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Sofia 1784, Bulgaria
| | - F Bohn
- Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN, Brazil
| |
Collapse
|
23
|
Ferrero EE, Foini L, Giamarchi T, Kolton AB, Rosso A. Spatiotemporal Patterns in Ultraslow Domain Wall Creep Dynamics. PHYSICAL REVIEW LETTERS 2017; 118:147208. [PMID: 28430477 DOI: 10.1103/physrevlett.118.147208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 06/07/2023]
Abstract
In the presence of impurities, ferromagnetic and ferroelectric domain walls slide only above a finite external field. Close to this depinning threshold, they proceed by large and abrupt jumps called avalanches, while, at much smaller fields, these interfaces creep by thermal activation. In this Letter, we develop a novel numerical technique that captures the ultraslow creep regime over huge time scales. We point out the existence of activated events that involve collective reorganizations similar to avalanches, but, at variance with them, display correlated spatiotemporal patterns that resemble the complex sequence of aftershocks observed after a large earthquake. Remarkably, we show that events assemble in independent clusters that display at large scales the same statistics as critical depinning avalanches. We foresee these correlated dynamics being experimentally accessible by magnetooptical imaging of ferromagnetic films.
Collapse
Affiliation(s)
- Ezequiel E Ferrero
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France and CNRS, LIPHY, F-38000 Grenoble, France
| | - Laura Foini
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland
| | - Thierry Giamarchi
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland
| | - Alejandro B Kolton
- Instituto Balseiro-UNCu and CONICET, Centro Atómico Bariloche, 8400 Bariloche, Argentina
| | - Alberto Rosso
- LPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
24
|
Janićević S, Laurson L, Måløy KJ, Santucci S, Alava MJ. Interevent Correlations from Avalanches Hiding Below the Detection Threshold. PHYSICAL REVIEW LETTERS 2016; 117:230601. [PMID: 27982624 DOI: 10.1103/physrevlett.117.230601] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Indexed: 06/06/2023]
Abstract
Numerous systems ranging from deformation of materials to earthquakes exhibit bursty dynamics, which consist of a sequence of events with a broad event size distribution. Very often these events are observed to be temporally correlated or clustered, evidenced by power-law-distributed waiting times separating two consecutive activity bursts. We show how such interevent correlations arise simply because of a finite detection threshold, created by the limited sensitivity of the measurement apparatus, or used to subtract background activity or noise from the activity signal. Data from crack-propagation experiments and numerical simulations of a nonequilibrium crack-line model demonstrate how thresholding leads to correlated bursts of activity by separating the avalanche events into subavalanches. The resulting temporal subavalanche correlations are well described by our general scaling description of thresholding-induced correlations in crackling noise.
Collapse
Affiliation(s)
- Sanja Janićević
- COMP Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto, Espoo, Finland
| | - Lasse Laurson
- COMP Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto, Espoo, Finland
- Helsinki Institute of Physics, Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto, Espoo, Finland
| | - Knut Jørgen Måløy
- Department of Physics, University of Oslo, PB 1048 Blindern, Oslo NO-0316, Norway
| | - Stéphane Santucci
- Department of Physics, University of Oslo, PB 1048 Blindern, Oslo NO-0316, Norway
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Mikko J Alava
- COMP Centre of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto, Espoo, Finland
| |
Collapse
|
25
|
Abstract
Dense monolayers of living cells display intriguing relaxation dynamics, reminiscent of soft and glassy materials close to the jamming transition, and migrate collectively when space is available, as in wound healing or in cancer invasion. Here we show that collective cell migration occurs in bursts that are similar to those recorded in the propagation of cracks, fluid fronts in porous media, and ferromagnetic domain walls. In analogy with these systems, the distribution of activity bursts displays scaling laws that are universal in different cell types and for cells moving on different substrates. The main features of the invasion dynamics are quantitatively captured by a model of interacting active particles moving in a disordered landscape. Our results illustrate that collective motion of living cells is analogous to the corresponding dynamics in driven, but inanimate, systems.
Collapse
|
26
|
Thiery T, Le Doussal P, Wiese KJ. Universal correlations between shocks in the ground state of elastic interfaces in disordered media. Phys Rev E 2016; 94:012110. [PMID: 27575080 DOI: 10.1103/physreve.94.012110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Indexed: 11/07/2022]
Abstract
The ground state of an elastic interface in a disordered medium undergoes collective jumps upon variation of external parameters. These mesoscopic jumps are called shocks, or static avalanches. Submitting the interface to a parabolic potential centered at w, we study the avalanches which occur as w is varied. We are interested in the correlations between the avalanche sizes S_{1} and S_{2} occurring at positions w_{1} and w_{2}. Using the functional renormalization group (FRG), we show that correlations exist for realistic interface models below their upper critical dimension. Notably, the connected moment 〈S_{1}S_{2}〉^{c} is up to a prefactor exactly the renormalized disorder correlator, itself a function of |w_{2}-w_{1}|. The latter is the universal function at the center of the FRG; hence, correlations between shocks are universal as well. All moments and the full joint probability distribution are computed to first nontrivial order in an ε expansion below the upper critical dimension. To quantify the local nature of the coupling between avalanches, we calculate the correlations of their local jumps. We finally test our predictions against simulations of a particle in random-bond and random-force disorder, with surprisingly good agreement.
Collapse
Affiliation(s)
- Thimothée Thiery
- CNRS-Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, PSL Research University, Sorbonne Universités, UPMC, 24 rue Lhomond, 75005 Paris, France
| | - Pierre Le Doussal
- CNRS-Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, PSL Research University, Sorbonne Universités, UPMC, 24 rue Lhomond, 75005 Paris, France
| | - Kay Jörg Wiese
- CNRS-Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, PSL Research University, Sorbonne Universités, UPMC, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
27
|
Durin G, Bohn F, Corrêa MA, Sommer RL, Le Doussal P, Wiese KJ. Quantitative Scaling of Magnetic Avalanches. PHYSICAL REVIEW LETTERS 2016; 117:087201. [PMID: 27588876 DOI: 10.1103/physrevlett.117.087201] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 06/06/2023]
Abstract
We provide the first quantitative comparison between Barkhausen noise experiments and recent predictions from the theory of avalanches for pinned interfaces, both in and beyond mean field. We study different classes of soft magnetic materials, including polycrystals and amorphous samples-which are characterized by long-range and short-range elasticity, respectively-both for thick and thin samples, i.e., with and without eddy currents. The temporal avalanche shape at fixed size as well as observables related to the joint distribution of sizes and durations are analyzed in detail. Both long-range and short-range samples with no eddy currents are fitted extremely well by the theoretical predictions. In particular, the short-range samples provide the first reliable test of the theory beyond mean field. The thick samples show systematic deviations from the scaling theory, providing unambiguous signatures for the presence of eddy currents.
Collapse
Affiliation(s)
- G Durin
- Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy
- ISI Foundation, Via Alassio 11/c, 10126 Torino, Italy
| | - F Bohn
- Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN, Brazil
| | - M A Corrêa
- Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN, Brazil
| | - R L Sommer
- Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Urca, 22290-180 Rio de Janeiro, RJ, Brazil
| | - P Le Doussal
- CNRS-Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
| | - K J Wiese
- CNRS-Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
28
|
Liu C, Ferrero EE, Puosi F, Barrat JL, Martens K. Driving Rate Dependence of Avalanche Statistics and Shapes at the Yielding Transition. PHYSICAL REVIEW LETTERS 2016; 116:065501. [PMID: 26918998 DOI: 10.1103/physrevlett.116.065501] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 06/05/2023]
Abstract
We study stress time series caused by plastic avalanches in athermally sheared disordered materials. Using particle-based simulations and a mesoscopic elastoplastic model, we analyze system size and shear-rate dependence of the stress-drop duration and size distributions together with their average temporal shape. We find critical exponents different from mean-field predictions, and a clear asymmetry for individual avalanches. We probe scaling relations for the rate dependency of the dynamics and we report a crossover towards mean-field results for strong driving.
Collapse
Affiliation(s)
- Chen Liu
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France
- CNRS, LIPHY, F-38000 Grenoble, France
| | - Ezequiel E Ferrero
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France
- CNRS, LIPHY, F-38000 Grenoble, France
| | - Francesco Puosi
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France
- CNRS, LIPHY, F-38000 Grenoble, France
- Ecole Normale Supérieure de Lyon, Laboratoire de Physique CNRS, 46 allée d'Italie, 69364 Lyon Cedex 7, France
| | - Jean-Louis Barrat
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France
- CNRS, LIPHY, F-38000 Grenoble, France
| | - Kirsten Martens
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France
- CNRS, LIPHY, F-38000 Grenoble, France
| |
Collapse
|
29
|
Fan Y, Iwashita T, Egami T. Crossover from Localized to Cascade Relaxations in Metallic Glasses. PHYSICAL REVIEW LETTERS 2015; 115:045501. [PMID: 26252694 DOI: 10.1103/physrevlett.115.045501] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Indexed: 06/04/2023]
Abstract
Thermally activated deformation is investigated in two metallic glass systems with different cooling histories. By probing the atomic displacements and stress changes on the potential energy landscape, two deformation modes, a localized process and cascade process, have observed. The localized deformation involves fewer than 30 atoms and appears in both systems, and its size is invariant with cooling history. However, the cascade deformation is more frequently observed in the fast quenched system than in the slowly quenched system. The origin of the cascade process in the fast quenched system is attributed to the higher density of local minima on the underlying potential energy landscape.
Collapse
Affiliation(s)
- Yue Fan
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Takuya Iwashita
- Department of Physics and Astronomy, Joint Institute for Neutron Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Takeshi Egami
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, Joint Institute for Neutron Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
30
|
Maass R, Wraith M, Uhl JT, Greer JR, Dahmen KA. Slip statistics of dislocation avalanches under different loading modes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:042403. [PMID: 25974504 DOI: 10.1103/physreve.91.042403] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Indexed: 06/04/2023]
Abstract
Slowly compressed microcrystals deform via intermittent slip events, observed as displacement jumps or stress drops. Experiments often use one of two loading modes: an increasing applied stress (stress driven, soft), or a constant strain rate (strain driven, hard). In this work we experimentally test the influence of the deformation loading conditions on the scaling behavior of slip events. It is found that these common deformation modes strongly affect time series properties, but not the scaling behavior of the slip statistics when analyzed with a mean-field model. With increasing plastic strain, the slip events are found to be smaller and more frequent when strain driven, and the slip-size distributions obtained for both drives collapse onto the same scaling function with the same exponents. The experimental results agree with the predictions of the used mean-field model, linking the slip behavior under different loading modes.
Collapse
Affiliation(s)
- R Maass
- California Institute of Technology, Division of Engineering and Applied Sciences, 1200 East California Boulevard, Pasadena, California 91125, USA
| | - M Wraith
- University of Illinois at Urbana-Champaign, Department of Physics, 1110 West Green Street, Urbana, Illinois 61801, USA
| | - J T Uhl
- University of Illinois at Urbana-Champaign, Department of Physics, 1110 West Green Street, Urbana, Illinois 61801, USA
| | - J R Greer
- California Institute of Technology, Division of Engineering and Applied Sciences, 1200 East California Boulevard, Pasadena, California 91125, USA
- Kavli Nanoscience Institute, California Institute of Technology, Pasadena, California 91125, USA
| | - K A Dahmen
- University of Illinois at Urbana-Champaign, Department of Physics, 1110 West Green Street, Urbana, Illinois 61801, USA
| |
Collapse
|
31
|
Stochastic formation of magnetic vortex structures in asymmetric disks triggered by chaotic dynamics. Nat Commun 2014; 5:5620. [PMID: 25517739 DOI: 10.1038/ncomms6620] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 10/21/2014] [Indexed: 11/08/2022] Open
Abstract
The non-trivial spin configuration in a magnetic vortex is a prototype for fundamental studies of nanoscale spin behaviour with potential applications in magnetic information technologies. Arrays of magnetic vortices interfacing with perpendicular thin films have recently been proposed as enabler for skyrmionic structures at room temperature, which has opened exciting perspectives on practical applications of skyrmions. An important milestone for achieving not only such skyrmion materials but also general applications of magnetic vortices is a reliable control of vortex structures. However, controlling magnetic processes is hampered by stochastic behaviour, which is associated with thermal fluctuations in general. Here we show that the dynamics in the initial stages of vortex formation on an ultrafast timescale plays a dominating role for the stochastic behaviour observed at steady state. Our results show that the intrinsic stochastic nature of vortex creation can be controlled by adjusting the interdisk distance in asymmetric disk arrays.
Collapse
|
32
|
Bohn F, Corrêa MA, Carara M, Papanikolaou S, Durin G, Sommer RL. Statistical properties of Barkhausen noise in amorphous ferromagnetic films. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:032821. [PMID: 25314495 DOI: 10.1103/physreve.90.032821] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Indexed: 06/04/2023]
Abstract
We investigate the statistical properties of the Barkhausen noise in amorphous ferromagnetic films with thicknesses in the range between 100 and 1000 nm. From Barkhausen noise time series measured with the traditional inductive technique, we perform a wide statistical analysis and establish the scaling exponents τ,α,1/σνz, and ϑ. We also focus on the average shape of the avalanches, which gives further indications on the domain-wall dynamics. Based on experimental results, we group the amorphous films in a single universality class, characterized by scaling exponents τ=1.28±0.02,α=1.52±0.3, and 1/σνz=ϑ=1.83±0.03, values compatible with that obtained for several bulk amorphous magnetic materials. Besides, we verify that the avalanche shape depends on the universality class. By considering the theoretical models for the dynamics of a ferromagnetic domain wall driven by an external magnetic field through a disordered medium found in literature, we interpret the results and identify an experimental evidence that these amorphous films, within this thickness range, present a typical three-dimensional magnetic behavior with predominant short-range elastic interactions governing the domain-wall dynamics. Moreover, we provide experimental support for the validity of a general scaling form for the average avalanche shape for non-mean-field systems.
Collapse
Affiliation(s)
- F Bohn
- Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-970 Natal, RN, Brazil
| | - M A Corrêa
- Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-970 Natal, RN, Brazil
| | - M Carara
- Departamento de Física, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - S Papanikolaou
- Department of Mechanical Engineering and Materials Science and Department of Physics, Yale University, New Haven, Connecticut 06520-8286, USA
| | - G Durin
- INRIM, Strada delle Cacce 91, 10135 Torino, Italy and ISI Foundation, Viale S. Severo 65, 10133 Torino, Italy
| | - R L Sommer
- Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Urca, 22290-180 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
33
|
Abstract
The bird feather vane can be separated into two parts by pulling the barbs apart. The original state can be re-established easily by lightly stroking through the feather. Hooklets responsible for holding vane barbs together are not damaged by multiple zipping and unzipping cycles. Because numerous microhooks keep the integrity of the feather, their properties are of great interest for understanding mechanics of the entire feather structure. This study was undertaken to estimate the separation force of single hooklets and their arrays using force measurement of an unzipping feather vane. The hooklets usually separate in some number synchronously (20 on average) with the highest observed separation force of 1.74 mN (average force 0.27 mN), whereas the single hooklet separation force was 14 μN. A simple numerical model was suggested for a better understanding of zipping and unzipping behaviour in feathers. The model demonstrates features similar to those observed in experiments.
Collapse
Affiliation(s)
- Alexander Kovalev
- Functional Morphology and Biomechanics, Department of Zoology, Kiel University, , Kiel 24118, Germany
| | | | | |
Collapse
|
34
|
Lebyodkin MA, Shashkov IV, Lebedkina TA, Mathis K, Dobron P, Chmelik F. Role of superposition of dislocation avalanches in the statistics of acoustic emission during plastic deformation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:042402. [PMID: 24229184 DOI: 10.1103/physreve.88.042402] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Indexed: 06/02/2023]
Abstract
Various dynamical systems with many degrees of freedom display avalanche dynamics, which is characterized by scale invariance reflected in power-law statistics. The superposition of avalanche processes in real systems driven at a finite velocity may influence the experimental determination of the underlying power law. The present paper reports results of an investigation of this effect using the example of acoustic emission (AE) accompanying plastic deformation of crystals. Indeed, recent studies of AE did not only prove that the dynamics of crystal defects obeys power-law statistics, but also led to a hypothesis of universality of the scaling law. We examine the sensitivity of the apparent statistics of AE to the parameters applied to individualize AE events. Two different alloys, MgZr and AlMg, both displaying strong AE but characterized by different plasticity mechanisms, are investigated. It is shown that the power-law indices display a good robustness in wide ranges of parameters even in the conditions leading to very strong superposition of AE events, although some deviations from the persistent values are also detected. The totality of the results confirms the scale-invariant character of deformation processes on the scale relevant to AE, but uncovers essential differences between the power-law exponents found for two kinds of alloys.
Collapse
Affiliation(s)
- M A Lebyodkin
- Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux, LEM3, CNRS/Université de Lorraine, UMR 7239, Ile du Saulcy, 57045 Metz, France
| | | | | | | | | | | |
Collapse
|
35
|
Bohn F, Corrêa MA, Viegas ADC, Papanikolaou S, Durin G, Sommer RL. Universal properties of magnetization dynamics in polycrystalline ferromagnetic films. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:032811. [PMID: 24125316 DOI: 10.1103/physreve.88.032811] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Indexed: 06/02/2023]
Abstract
We investigate the scaling behavior in the statistical properties of Barkhausen noise in ferromagnetic films. We apply the statistical treatment usually employed for bulk materials in experimental Barkhausen noise time series measured with the traditional inductive technique in polycrystalline ferromagnetic films having different thickness from 100 to 1000 nm and determine the scaling exponents. Based on this procedure, we group the samples in a single universality class, since the scaling behavior of Barkhausen avalanches is characterized by exponents τ∼1.5, α∼2.0, and 1/σνz∼ϑ∼2.0 for all the films. We interpret these results in terms of theoretical models and provide experimental evidence that a well-known mean-field model for the dynamics of a ferromagnetic domain wall in three-dimensional ferromagnets can be extended for films. We identify that the films present an universal three-dimensional magnetization dynamics, governed by long-range dipolar interactions, even at the smallest thicknesses, indicating that the two-dimensional magnetic behavior commonly verified for films cannot be generalized for all thickness ranges.
Collapse
Affiliation(s)
- Felipe Bohn
- Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN, Brazil
| | | | | | | | | | | |
Collapse
|
36
|
Dobrinevski A, Le Doussal P, Wiese KJ. Statistics of avalanches with relaxation and Barkhausen noise: a solvable model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:032106. [PMID: 24125213 DOI: 10.1103/physreve.88.032106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Indexed: 06/02/2023]
Abstract
We study a generalization of the Alessandro-Beatrice-Bertotti-Montorsi (ABBM) model of a particle in a Brownian force landscape, including retardation effects. We show that under monotonous driving the particle moves forward at all times, as it does in absence of retardation (Middleton's theorem). This remarkable property allows us to develop an analytical treatment. The model with an exponentially decaying memory kernel is realized in Barkhausen experiments with eddy-current relaxation and has previously been shown numerically to account for the experimentally observed asymmetry of Barkhausen pulse shapes. We elucidate another qualitatively new feature: the breakup of each avalanche of the standard ABBM model into a cluster of subavalanches, sharply delimited for slow relaxation under quasistatic driving. These conditions are typical for earthquake dynamics. With relaxation and aftershock clustering, the present model includes important ingredients for an effective description of earthquakes. We analyze quantitatively the limits of slow and fast relaxation for stationary driving with velocity v>0. The v-dependent power-law exponent for small velocities, and the critical driving velocity at which the particle velocity never vanishes, are modified. We also analyze nonstationary avalanches following a step in the driving magnetic field. Analytically, we obtain the mean avalanche shape at fixed size, the duration distribution of the first subavalanche, and the time dependence of the mean velocity. We propose to study these observables in experiments, allowing a direct measurement of the shape of the memory kernel and tracing eddy current relaxation in Barkhausen noise.
Collapse
Affiliation(s)
- Alexander Dobrinevski
- CNRS-Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
| | | | | |
Collapse
|
37
|
Barés J, Barbier L, Bonamy D. Crackling versus continuumlike dynamics in brittle failure. PHYSICAL REVIEW LETTERS 2013; 111:054301. [PMID: 23952406 DOI: 10.1103/physrevlett.111.054301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Indexed: 06/02/2023]
Abstract
We study how the loading rate, specimen geometry, and microstructural texture select the dynamics of a crack moving through an heterogeneous elastic material in the quasistatic approximation. We find a transition, fully controlled by two dimensionless variables, between dynamics ruled by continuum fracture mechanics and crackling dynamics. Selection of the latter by the loading, microstructure, and specimen parameters is formulated in terms of scaling laws on the power spectrum of crack velocity. This analysis defines the experimental conditions required to observe crackling in fracture. Beyond failure problems, the results extend to a variety of situations described by models of the same universality class, e.g., the dynamics in wetting or of domain walls in amorphous ferromagnets.
Collapse
Affiliation(s)
- J Barés
- CEA, IRAMIS, SPCSI, Group Complex Systems and Fracture, F-91191 Gif sur Yvette, France
| | | | | |
Collapse
|
38
|
Le Doussal P, Wiese KJ. Avalanche dynamics of elastic interfaces. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:022106. [PMID: 24032774 DOI: 10.1103/physreve.88.022106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Indexed: 06/02/2023]
Abstract
Slowly driven elastic interfaces, such as domain walls in dirty magnets, contact lines wetting a nonhomogeneous substrate, or cracks in brittle disordered material proceed via intermittent motion, called avalanches. Here we develop a field-theoretic treatment to calculate, from first principles, the space-time statistics of instantaneous velocities within an avalanche. For elastic interfaces at (or above) their (internal) upper critical dimension d≥d(uc) (d(uc)=2,4 respectively for long-ranged and short-ranged elasticity) we show that the field theory for the center of mass reduces to the motion of a point particle in a random-force landscape, which is itself a random walk [Alessandro, Beatrice, Bertotti, and Montorsi (ABBM) model]. Furthermore, the full spatial dependence of the velocity correlations is described by the Brownian-force model (BFM) where each point of the interface sees an independent Brownian-force landscape. Both ABBM and BFM can be solved exactly in any dimension d (for monotonous driving) by summing tree graphs, equivalent to solving a (nonlinear) instanton equation. We focus on the limit of slow uniform driving. This tree approximation is the mean-field theory (MFT) for realistic interfaces in short-ranged disorder, up to the renormalization of two parameters at d=d(uc). We calculate a number of observables of direct experimental interest: Both for the center of mass, and for a given Fourier mode q, we obtain various correlations and probability distribution functions (PDF's) of the velocity inside an avalanche, as well as the avalanche shape and its fluctuations (second shape). Within MFT we find that velocity correlations at nonzero q are asymmetric under time reversal. Next we calculate, beyond MFT, i.e., including loop corrections, the one-time PDF of the center-of-mass velocity u[over ·] for dimension d<d(uc). The singularity at small velocity P(u[over ·])~1/u[over ·](a) is substantially reduced from a=1 (MFT) to a=1-2/9(4-d)+... (short-ranged elasticity) and a=1-4/9(2-d)+... (long-ranged elasticity). We show how the dynamical theory recovers the avalanche-size distribution, and how the instanton relates to the response to an infinitesimal step in the force.
Collapse
Affiliation(s)
- Pierre Le Doussal
- CNRS-Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
| | | |
Collapse
|
39
|
Handford TP, Pérez-Reche FJ, Taraskin SN. Mechanisms of evolution of avalanches in regular graphs. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:062122. [PMID: 23848642 DOI: 10.1103/physreve.87.062122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Indexed: 06/02/2023]
Abstract
A mapping of avalanches occurring in the zero-temperature random-field Ising model to life periods of a population experiencing immigration is established. Such a mapping allows the microscopic criteria for the occurrence of an infinite avalanche in a q-regular graph to be determined. A key factor for an avalanche of spin flips to become infinite is that it interacts in an optimal way with previously flipped spins. Based on these criteria, we explain why an infinite avalanche can occur in q-regular graphs only for q>3 and suggest that this criterion might be relevant for other systems. The generating function techniques developed for branching processes are applied to obtain analytical expressions for the durations, pulse shapes, and power spectra of the avalanches. The results show that only very long avalanches exhibit a significant degree of universality.
Collapse
Affiliation(s)
- Thomas P Handford
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| | | | | |
Collapse
|
40
|
LeBlanc M, Angheluta L, Dahmen K, Goldenfeld N. Universal fluctuations and extreme statistics of avalanches near the depinning transition. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:022126. [PMID: 23496478 DOI: 10.1103/physreve.87.022126] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Indexed: 06/01/2023]
Abstract
We derive exact predictions for universal scaling exponents and scaling functions associated with the statistics of maximum velocities v(m) during avalanches described by the mean-field theory of the interface depinning transition. In particular, we find a robust power-law regime in the statistics of maximum events that can explain the observed distribution of the peak amplitudes in acoustic emission experiments of crystal plasticity. Our results are expected to be broadly applicable to a broad range of systems in the mean-field interface depinning universality class, ranging from magnets to earthquakes.
Collapse
Affiliation(s)
- Michael LeBlanc
- Department of Physics, University of Illinois at Urbana-Champaign, Loomis Laboratory of Physics, 1110 West Green Street, Urbana, Illinois 61801-3080, USA
| | | | | | | |
Collapse
|
41
|
Laurson L, Illa X, Santucci S, Tore Tallakstad K, Måløy KJ, Alava MJ. Evolution of the average avalanche shape with the universality class. Nat Commun 2013; 4:2927. [PMID: 24352571 PMCID: PMC3905775 DOI: 10.1038/ncomms3927] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/13/2013] [Indexed: 11/09/2022] Open
Abstract
A multitude of systems ranging from the Barkhausen effect in ferromagnetic materials to plastic deformation and earthquakes respond to slow external driving by exhibiting intermittent, scale-free avalanche dynamics or crackling noise. The avalanches are power-law distributed in size, and have a typical average shape: these are the two most important signatures of avalanching systems. Here we show how the average avalanche shape evolves with the universality class of the avalanche dynamics by employing a combination of scaling theory, extensive numerical simulations and data from crack propagation experiments. It follows a simple scaling form parameterized by two numbers, the scaling exponent relating the average avalanche size to its duration and a parameter characterizing the temporal asymmetry of the avalanches. The latter reflects a broken time-reversal symmetry in the avalanche dynamics, emerging from the local nature of the interaction kernel mediating the avalanche dynamics.
Collapse
Affiliation(s)
- Lasse Laurson
- COMP Centre of Excellence, Department of Applied Physics, P.O. Box 11100, FI-00076 Aalto, Espoo, Finland
| | - Xavier Illa
- Facultat de Física, Departament Estructura i Constituents de la Materia, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
| | - Stéphane Santucci
- Laboratoire de physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon Cedex 07, France
| | - Ken Tore Tallakstad
- Department of Physics, University of Oslo, PB 1048 Blindern, NO-0316 Oslo, Norway
| | - Knut Jørgen Måløy
- Department of Physics, University of Oslo, PB 1048 Blindern, NO-0316 Oslo, Norway
| | - Mikko J Alava
- COMP Centre of Excellence, Department of Applied Physics, P.O. Box 11100, FI-00076 Aalto, Espoo, Finland
| |
Collapse
|
42
|
Dos Santos Lima GZ, Corrêa MA, Sommer RL, Bohn F. Multifractality in domain wall dynamics of a ferromagnetic film. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:066117. [PMID: 23368014 DOI: 10.1103/physreve.86.066117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Indexed: 06/01/2023]
Abstract
We investigate the multifractal properties in the dynamics of domain walls of a ferromagnetic film. We apply the Multifractal Detrended Fluctuation Analysis method in experimental Barkhausen noise time series measured in a 1000-nm-thick Permalloy film under different driving magnetic field frequencies, and calculate the fluctuation function F_{q}(s), generalized Hurst exponent h(q), multifractal scaling exponent τ(q), and the multifractal spectrum f(α). Based on this procedure, we provide experimental evidence of multifractality in the dynamics of domain walls in ferromagnetic films and identify a rich and strong multifractal behavior, revealed by the changes of the scaling properties of over the entire Barkhausen noise signal, independently of the driving magnetic field rate employed in the experiment.
Collapse
Affiliation(s)
- G Z Dos Santos Lima
- Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, 59078-970 Natal, RN, Brazil.
| | | | | | | |
Collapse
|
43
|
Le Doussal P, Petković A, Wiese KJ. Distribution of velocities and acceleration for a particle in Brownian correlated disorder: inertial case. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:061116. [PMID: 23005060 DOI: 10.1103/physreve.85.061116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Indexed: 06/01/2023]
Abstract
We study the motion of an elastic object driven in a disordered environment in presence of both dissipation and inertia. We consider random forces with the statistics of random walks and reduce the problem to a single degree of freedom. It is the extension of the mean-field Alessandro-Beatrice- Bertotti-Montorsi (ABBM) model in presence of an inertial mass m. While the ABBM model can be solved exactly, its extension to inertia exhibits complicated history dependence due to oscillations and backward motion. The characteristic scales for avalanche motion are studied from numerics and qualitative arguments. To make analytical progress, we consider two variants which coincide with the original model whenever the particle moves only forward. Using a combination of analytical and numerical methods together with simulations, we characterize the distributions of instantaneous acceleration and velocity, and compare them in these three models. We show that for large driving velocity, all three models share the same large-deviation function for positive velocities, which is obtained analytically for small and large m, as well as for m=6/25. The effect of small additional thermal and quantum fluctuations can be treated within an approximate method.
Collapse
Affiliation(s)
- Pierre Le Doussal
- Laboratoire de Physique Théorique-CNRS, Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
| | | | | |
Collapse
|
44
|
Dobrinevski A, Le Doussal P, Wiese KJ. Nonstationary dynamics of the Alessandro-Beatrice-Bertotti-Montorsi model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:031105. [PMID: 22587036 DOI: 10.1103/physreve.85.031105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Indexed: 05/31/2023]
Abstract
We obtain an exact solution for the motion of a particle driven by a spring in a Brownian random-force landscape, the Alessandro-Beatrice-Bertotti-Montorsi (ABBM) model. Many experiments on quasistatic driving of elastic interfaces (Barkhausen noise in magnets, earthquake statistics, shear dynamics of granular matter) exhibit the same universal behavior as this model. It also appears as a limit in the field theory of elastic manifolds. Here we discuss predictions of the ABBM model for monotonous, but otherwise arbitrary, time-dependent driving. Our main result is an explicit formula for the generating functional of particle velocities and positions. We apply this to derive the particle-velocity distribution following a quench in the driving velocity. We also obtain the joint avalanche size and duration distribution and the mean avalanche shape following a jump in the position of the confining spring. Such nonstationary driving is easy to realize in experiments, and provides a way to test the ABBM model beyond the stationary, quasistatic regime. We study extensions to two elastically coupled layers, and to an elastic interface of internal dimension d, in the Brownian force landscape. The effective action of the field theory is equal to the action, up to one-loop corrections obtained exactly from a functional determinant. This provides a connection to renormalization-group methods.
Collapse
Affiliation(s)
- Alexander Dobrinevski
- CNRS-Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, Paris, France.
| | | | | |
Collapse
|
45
|
Su R, Seu KA, Parks D, Kan JJ, Fullerton EE, Roy S, Kevan SD. Emergent rotational symmetries in disordered magnetic domain patterns. PHYSICAL REVIEW LETTERS 2011; 107:257204. [PMID: 22243108 DOI: 10.1103/physrevlett.107.257204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Indexed: 05/31/2023]
Abstract
Uniaxial systems often form labyrinthine domains that exhibit short-range order but are macroscopically isotropic and would not be expected to exhibit precise symmetries. However, their underlying frustration results in a multitude of metastable configurations of comparable energy, and driving such a system externally might lead to pattern formation. We find that soft x-ray speckle diffraction patterns of the labyrinthine domains in CoPd/IrMn heterostructures reveal a diverse array of hidden rotational symmetries about the magnetization axis, thereby suggesting an unusual form of emergent order in an otherwise disordered system. These symmetries depend on applied magnetic field, magnetization history, and scattering wave vector. Maps of rotational symmetry exhibit intriguing structures that can be controlled by manipulating the applied magnetic field in concert with the exchange bias condition.
Collapse
Affiliation(s)
- Run Su
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Brinkman BAW, Dahmen KA. Tuning coupling: discrete changes in runaway avalanche sizes in disordered media. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:041129. [PMID: 22181109 DOI: 10.1103/physreve.84.041129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Indexed: 05/31/2023]
Abstract
Hysteretic systems may exhibit a runaway avalanche in which a large fraction of the constituents of the system collectively change state. It would be very valuable to understand the role that interaction strength between constituents plays in the size of such catastrophic runaway avalanches. We use a simple model, the random field Ising model, to study how the size of the runaway avalanche changes as the coupling between spins, J, is tuned. In particular, we calculate P(S), the distribution of size changes S in the runaway avalanche size as J comes close to a critical value J(c), and find that the distribution scales as P(S)∼S(-τ)D(S(σ)(J/J(c)-1)), with τ and σ critical exponents and D(x) a universal scaling function. In mean field theory we find τ=3/2, σ=1/2, and D(x)=exp[-(3x)(1/σ)/2]. On the basis of these results and previous studies, we also predict that for three dimensions τ=1.6 and σ=0.24.
Collapse
Affiliation(s)
- Braden A W Brinkman
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street Urbana, Illinois 61801-3080, USA
| | | |
Collapse
|
47
|
Kobayashi S. Universal hysteresis scaling for incommensurate magnetic order in dysprosium. PHYSICAL REVIEW LETTERS 2011; 106:057207. [PMID: 21405431 DOI: 10.1103/physrevlett.106.057207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Indexed: 05/30/2023]
Abstract
We study the scaling properties of magnetic minor hysteresis loops in a polycrystalline dysprosium metal, varying temperature and magnetic-field amplitudes. We observe irreversibility-related hysteresis loss in the helical antiferromagnetic phase, which is related with remanent flux density as a power law with the same scaling exponent of 1.25±0.05 as that in ferromagnetic materials. In contrast to hysteresis scalings in ferromagnets associated with 180° Bloch walls, the observed law is governed by spiral walls which separate helical domains with oppositely rotating spins.
Collapse
Affiliation(s)
- Satoru Kobayashi
- NDE and Science Research Center, Faculty of Engineering, Iwate University, Ueda 4-3-5, Morioka 020-8551, Japan.
| |
Collapse
|
48
|
Singh A, Mukhopadhyay S, Ghosh A. Tracking random walk of individual domain walls in cylindrical nanomagnets with resistance noise. PHYSICAL REVIEW LETTERS 2010; 105:067206. [PMID: 20868006 DOI: 10.1103/physrevlett.105.067206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Indexed: 05/29/2023]
Abstract
The stochasticity of domain-wall (DW) motion in magnetic nanowires has been probed by measuring slow fluctuations, or noise, in electrical resistance at small magnetic fields. By controlled injection of DWs into isolated cylindrical nanowires of nickel, we have been able to track the motion of the DWs between the electrical leads by discrete steps in the resistance. Closer inspection of the time dependence of noise reveals a diffusive random walk of the DWs with a universal kinetic exponent. Our experiments outline a method with which electrical resistance is able to detect the kinetic state of the DWs inside the nanowires, which can be useful in DW-based memory designs.
Collapse
Affiliation(s)
- Amrita Singh
- Department of Physics, Indian Institute of Science, Bangalore 560 012, India.
| | | | | |
Collapse
|
49
|
Le Doussal P, Wiese KJ. Elasticity of a contact-line and avalanche-size distribution at depinning. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:011108. [PMID: 20866566 DOI: 10.1103/physreve.82.011108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Indexed: 05/29/2023]
Abstract
Motivated by recent experiments, we extend the Joanny-deGennes calculation of the elasticity of a contact line to an arbitrary contact angle and an arbitrary plate inclination in presence of gravity. This requires a diagonalization of the elastic modes around the nonlinear equilibrium profile, which is carried out exactly. We then make detailed predictions for the avalanche-size distribution at quasistatic depinning: we study how the universal (i.e., short-scale independent) rescaled size distribution and the ratio of moments of local to global avalanches depend on the precise form of the elastic kernel.
Collapse
Affiliation(s)
- Pierre Le Doussal
- CNRS-Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, 73231 Paris Cedex 05, France
| | | |
Collapse
|
50
|
Pugno N, Bosia F, Gliozzi AS, Delsanto PP, Carpinteri A. Phenomenological approach to mechanical damage growth analysis. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 78:046103. [PMID: 18999489 DOI: 10.1103/physreve.78.046103] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 06/16/2008] [Indexed: 05/27/2023]
Abstract
The problem of characterizing damage evolution in a generic material is addressed with the aim of tracing it back to existing growth models in other fields of research. Based on energetic considerations, a system evolution equation is derived for a generic damage indicator describing a material system subjected to an increasing external stress. The latter is found to fit into the framework of a recently developed phenomenological universality (PUN) approach and, more specifically, the so-called U2 class. Analytical results are confirmed by numerical simulations based on a fiber-bundle model and statistically assigned local strengths at the microscale. The fits with numerical data prove, with an excellent degree of reliability, that the typical evolution of the damage indicator belongs to the aforementioned PUN class. Applications of this result are briefly discussed and suggested.
Collapse
Affiliation(s)
- Nicola Pugno
- Department of Structural Engineering and Geotechnics, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | | | | | | | | |
Collapse
|