Li C, Chen L, Aihara K. Transient resetting: a novel mechanism for synchrony and its biological examples.
PLoS Comput Biol 2006;
2:e103. [PMID:
16933980 PMCID:
PMC1526460 DOI:
10.1371/journal.pcbi.0020103]
[Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 06/26/2006] [Indexed: 11/19/2022] Open
Abstract
The study of synchronization in biological systems is essential for the understanding of the rhythmic phenomena of living organisms at both molecular and cellular levels. In this paper, by using simple dynamical systems theory, we present a novel mechanism, named transient resetting, for the synchronization of uncoupled biological oscillators with stimuli. This mechanism not only can unify and extend many existing results on (deterministic and stochastic) stimulus-induced synchrony, but also may actually play an important role in biological rhythms. We argue that transient resetting is a possible mechanism for the synchronization in many biological organisms, which might also be further used in the medical therapy of rhythmic disorders. Examples of the synchronization of neural and circadian oscillators as well as a chaotic neuron model are presented to verify our hypothesis.
Synchronization of dynamical systems is a process whereby two or more systems adjust a given property of their motions to a common behavior due to coupling or forcing. Synchronization has attracted much attention from physicists, biologists, applied mathematicians, and engineers for many years and is a ubiquitous phenomenon. In this paper, Li et al. present a very simple, but general mechanism, called transient resetting, that explains stimulus-induced synchronization in dynamic systems. The mechanism pertains not only to periodic oscillators but also to chaotic ones, and not only to continuous time systems but also to discrete time systems. Biological systems are dynamic, and their synchronization is essential, for example, in the genesis of rhythmic phenomena and information processing. In this paper, the authors study several possible instances of their novel mechanism in a biological context. They also suggest that transient resetting might be used therapeutically in rhythmic disorders. The beneficial role of noise in biological systems has been studied extensively in recent years. Li and colleagues' mechanism provides an explanation for this role in the synchronization in biological systems, even when the stimulus or input to the system is not random or noisy.
Collapse