1
|
Wijewardena UK, Nanayakkara TR, Kriisa A, Reichl C, Wegscheider W, Mani RG. Size dependence- and induced transformations- of fractional quantum Hall effects under tilted magnetic fields. Sci Rep 2022; 12:19204. [PMID: 36357438 PMCID: PMC9649807 DOI: 10.1038/s41598-022-22812-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/19/2022] [Indexed: 11/12/2022] Open
Abstract
Two-dimensional electron systems subjected to high transverse magnetic fields can exhibit Fractional Quantum Hall Effects (FQHE). In the GaAs/AlGaAs 2D electron system, a double degeneracy of Landau levels due to electron-spin, is removed by a small Zeeman spin splitting, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$g \mu _B B$$\end{document}gμBB, comparable to the correlation energy. Then, a change of the Zeeman splitting relative to the correlation energy can lead to a re-ordering between spin polarized, partially polarized, and unpolarized many body ground states at a constant filling factor. We show here that tuning the spin energy can produce fractionally quantized Hall effect transitions that include both a change in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\nu$$\end{document}ν for the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R_{xx}$$\end{document}Rxx minimum, e.g., from \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\nu = 11/7$$\end{document}ν=11/7 to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\nu = 8/5$$\end{document}ν=8/5, and a corresponding change in the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R_{xy}$$\end{document}Rxy, e.g., from \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R_{xy}/R_{K} = (11/7)^{-1}$$\end{document}Rxy/RK=(11/7)-1 to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R_{xy}/R_{K} = (8/5)^{-1}$$\end{document}Rxy/RK=(8/5)-1, with increasing tilt angle. Further, we exhibit a striking size dependence in the tilt angle interval for the vanishing of the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\nu = 4/3$$\end{document}ν=4/3 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\nu = 7/5$$\end{document}ν=7/5 resistance minima, including “avoided crossing” type lineshape characteristics, and observable shifts of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R_{xy}$$\end{document}Rxy at the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R_{xx}$$\end{document}Rxx minima- the latter occurring for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\nu = 4/3, 7/5$$\end{document}ν=4/3,7/5 and the 10/7. The results demonstrate both size dependence and the possibility, not just of competition between different spin polarized states at the same \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\nu$$\end{document}ν and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R_{xy}$$\end{document}Rxy, but also the tilt- or Zeeman-energy-dependent- crossover between distinct FQHE associated with different Hall resistances.
Collapse
|
2
|
Lafont F, Rosenblatt A, Heiblum M, Umansky V. Counter-propagating charge transport in the quantum Hall effect regime. Science 2019; 363:54-57. [PMID: 30606839 DOI: 10.1126/science.aar3766] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/08/2018] [Indexed: 11/02/2022]
Abstract
The quantum Hall effect, observed in a two-dimensional (2D) electron gas subjected to a perpendicular magnetic field, imposes a 1D-like chiral, downstream, transport of charge carriers along the sample edges. Although this picture remains valid for electrons and Laughlin's fractional quasiparticles, it no longer holds for quasiparticles in the so-called hole-conjugate states. These states are expected, when disorder and interactions are weak, to harbor upstream charge modes. However, so far, charge currents were observed to flow exclusively downstream in the quantum Hall regime. Studying the canonical spin-polarized and spin-unpolarized v = 2/3 hole-like states in GaAs-AlGaAs heterostructures, we observed a significant upstream charge current at short propagation distances in the spin unpolarized state.
Collapse
Affiliation(s)
- Fabien Lafont
- Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel. .,College de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Amir Rosenblatt
- Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moty Heiblum
- Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Vladimir Umansky
- Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
3
|
Moore JN, Hayakawa J, Mano T, Noda T, Yusa G. Optically Imaged Striped Domains of Nonequilibrium Electronic and Nuclear Spins in a Fractional Quantum Hall Liquid. PHYSICAL REVIEW LETTERS 2017; 118:076802. [PMID: 28256890 DOI: 10.1103/physrevlett.118.076802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Indexed: 06/06/2023]
Abstract
Using photoluminescence microscopy enhanced by magnetic resonance, we visualize in real space both electron and nuclear polarization occurring in nonequilibrium fraction quantum Hall (FQH) liquids. We observe stripelike domain regions comprising FQH excited states which discretely form when the FQH liquid is excited by a source-drain current. These regions are deformable and give rise to bidirectionally polarized nuclear spins as spin-resolved electrons flow across their boundaries.
Collapse
Affiliation(s)
- John N Moore
- Department of Physics, Tohoku University, Sendai 980-8578, Japan
| | | | - Takaaki Mano
- National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
| | - Takeshi Noda
- National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
| | - Go Yusa
- Department of Physics, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
4
|
Hennel S, Braem BA, Baer S, Tiemann L, Sohi P, Wehrli D, Hofmann A, Reichl C, Wegscheider W, Rössler C, Ihn T, Ensslin K, Rudner MS, Rosenow B. Nonlocal Polarization Feedback in a Fractional Quantum Hall Ferromagnet. PHYSICAL REVIEW LETTERS 2016; 116:136804. [PMID: 27081998 DOI: 10.1103/physrevlett.116.136804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Indexed: 06/05/2023]
Abstract
In a quantum Hall ferromagnet, the spin polarization of the two-dimensional electron system can be dynamically transferred to nuclear spins in its vicinity through the hyperfine interaction. The resulting nuclear field typically acts back locally, modifying the local electronic Zeeman energy. Here we report a nonlocal effect arising from the interplay between nuclear polarization and the spatial structure of electronic domains in a ν=2/3 fractional quantum Hall state. In our experiments, we use a quantum point contact to locally control and probe the domain structure of different spin configurations emerging at the spin phase transition. Feedback between nuclear and electronic degrees of freedom gives rise to memristive behavior, where electronic transport through the quantum point contact depends on the history of current flow. We propose a model for this effect which suggests a novel route to studying edge states in fractional quantum Hall systems and may account for so-far unexplained oscillatory electronic-transport features observed in previous studies.
Collapse
Affiliation(s)
- Szymon Hennel
- Solid State Physics Laboratory, ETH Zürich, 8093 Zürich, Switzerland
| | - Beat A Braem
- Solid State Physics Laboratory, ETH Zürich, 8093 Zürich, Switzerland
| | - Stephan Baer
- Solid State Physics Laboratory, ETH Zürich, 8093 Zürich, Switzerland
| | - Lars Tiemann
- Solid State Physics Laboratory, ETH Zürich, 8093 Zürich, Switzerland
| | - Pirouz Sohi
- Solid State Physics Laboratory, ETH Zürich, 8093 Zürich, Switzerland
| | - Dominik Wehrli
- Solid State Physics Laboratory, ETH Zürich, 8093 Zürich, Switzerland
| | - Andrea Hofmann
- Solid State Physics Laboratory, ETH Zürich, 8093 Zürich, Switzerland
| | - Christian Reichl
- Solid State Physics Laboratory, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Clemens Rössler
- Solid State Physics Laboratory, ETH Zürich, 8093 Zürich, Switzerland
| | - Thomas Ihn
- Solid State Physics Laboratory, ETH Zürich, 8093 Zürich, Switzerland
| | - Klaus Ensslin
- Solid State Physics Laboratory, ETH Zürich, 8093 Zürich, Switzerland
| | - Mark S Rudner
- Niels Bohr International Academy and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Bernd Rosenow
- Institut für Theoretische Physik, Universität Leipzig, D-04009 Leipzig, Germany
| |
Collapse
|
5
|
Miyamoto S, Miura T, Watanabe S, Nagase K, Hirayama Y. Localized NMR Mediated by Electrical-Field-Induced Domain Wall Oscillation in Quantum-Hall-Ferromagnet Nanowire. NANO LETTERS 2016; 16:1596-1601. [PMID: 26885703 DOI: 10.1021/acs.nanolett.5b04209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present fractional quantum Hall domain walls confined in a gate-defined wire structure. Our experiments utilize spatial oscillation of domain walls driven by radio frequency electric fields to cause nuclear magnetic resonance. The resulting spectra are discussed in terms of both large quadrupole fields created around the wire and hyperfine fields associated with the oscillating domain walls. This provides the experimental fact that the domain walls survive near the confined geometry despite of potential deformation, by which a localized magnetic resonance is allowed in electrical means.
Collapse
Affiliation(s)
- S Miyamoto
- Department of Physics, Tohoku University , 6-3 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - T Miura
- Department of Physics, Tohoku University , 6-3 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - S Watanabe
- Institute of Science and Engineering, Kanazawa University , Kanazawa 920-1192, Japan
| | - K Nagase
- Department of Physics, Tohoku University , 6-3 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Y Hirayama
- Department of Physics, Tohoku University , 6-3 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8578, Japan
- WPI-AIMR, Tohoku University , 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
6
|
Friess B, Umansky V, Tiemann L, von Klitzing K, Smet JH. Probing the microscopic structure of the stripe phase at filling factor 5/2. PHYSICAL REVIEW LETTERS 2014; 113:076803. [PMID: 25170726 DOI: 10.1103/physrevlett.113.076803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Indexed: 06/03/2023]
Abstract
A prominent manifestation of the competition between repulsive and attractive interactions acting on different length scales is the self-organized ordering of electrons in a stripelike fashion in material systems such as high-T_{c} superconductors. Such stripe phases are also believed to occur in two-dimensional electron systems exposed to a perpendicular magnetic field, where they cause a strong anisotropy in transport. The addition of an in-plane field even enables us to expel fractional quantum Hall states, to the benefit of such anisotropic phases. An important example represents the disappearance of the 5/2 fractional state. Here, we report the use of nuclear magnetic resonance spectroscopy to probe the electron density distribution of this emergent anisotropic phase. A surprisingly strong spatial density modulation was found. The observed behavior suggests a stripe pattern with a period of 2.6±0.6 magnetic lengths and an amplitude as large as 20% relative to the total density.
Collapse
Affiliation(s)
- Benedikt Friess
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - Vladimir Umansky
- Braun Center for Submicron Research, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lars Tiemann
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - Klaus von Klitzing
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - Jurgen H Smet
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| |
Collapse
|
7
|
Mukherjee S, Mandal SS, Wu YH, Wójs A, Jain JK. Enigmatic 4/11 state: a prototype for unconventional fractional quantum Hall effect. PHYSICAL REVIEW LETTERS 2014; 112:016801. [PMID: 24483916 DOI: 10.1103/physrevlett.112.016801] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Indexed: 06/03/2023]
Abstract
The origin of the fractional quantum Hall effect (FQHE) at 4/11 and 5/13 has remained controversial. We make a compelling case that the FQHE is possible here for fully spin polarized composite fermions, but with an unconventional underlying physics. Thanks to a rather unusual interaction between composite fermions, the FQHE here results from the suppression of pairs with a relative angular momentum of three rather than one, confirming the exotic mechanism proposed by Wójs, Yi, and Quinn [Phys. Rev. B 69, 205322 (2004)]. We predict that the 4/11 state reported a decade ago by Pan et al. [Phys. Rev. Lett. 90, 016801 (2003)] is a conventional partially spin polarized FQHE of composite fermions, and we estimate the Zeeman energy where a phase transition into the unconventional fully spin polarized state will occur.
Collapse
Affiliation(s)
- Sutirtha Mukherjee
- Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Sudhansu S Mandal
- Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Ying-Hai Wu
- Department of Physics, 104 Davey Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Arkadiusz Wójs
- Institute of Physics, Wroclaw University of Technology, 50-370 Wroclaw, Poland
| | - Jainendra K Jain
- Department of Physics, 104 Davey Laboratory, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
8
|
Feldman BE, Levin AJ, Krauss B, Abanin DA, Halperin BI, Smet JH, Yacoby A. Fractional quantum Hall phase transitions and four-flux states in graphene. PHYSICAL REVIEW LETTERS 2013; 111:076802. [PMID: 23992076 DOI: 10.1103/physrevlett.111.076802] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Indexed: 06/02/2023]
Abstract
Graphene and its multilayers have attracted considerable interest because their fourfold spin and valley degeneracy enables a rich variety of broken-symmetry states arising from electron-electron interactions, and raises the prospect of controlled phase transitions among them. Here we report local electronic compressibility measurements of ultraclean suspended graphene that reveal a multitude of fractional quantum Hall states surrounding filling factors ν=-1/2 and -1/4. Several of these states exhibit phase transitions that indicate abrupt changes in the underlying order, and we observe many additional oscillations in compressibility as ν approaches -1/2, suggesting further changes in spin and/or valley polarization. We use a simple model based on crossing Landau levels of composite fermions with different internal degrees of freedom to explain many qualitative features of the experimental data. Our results add to the diverse array of many-body states observed in graphene and demonstrate substantial control over their order parameters.
Collapse
Affiliation(s)
- Benjamin E Feldman
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Archer AC, Jain JK. Phase diagram of the two-component fractional quantum Hall effect. PHYSICAL REVIEW LETTERS 2013; 110:246801. [PMID: 25165951 DOI: 10.1103/physrevlett.110.246801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Indexed: 06/03/2023]
Abstract
We calculate the phase diagram of the two component fractional quantum Hall effect as a function of the spin or valley Zeeman energy and the filling factor, which reveals new phase transitions and phase boundaries spanning many fractional plateaus. This phase diagram is relevant to the fractional quantum Hall effect in graphene and in GaAs and AlAs quantum wells, when either the spin or valley degree of freedom is active.
Collapse
Affiliation(s)
- Alexander C Archer
- Department of Physics, 104 Davey Lab, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Jainendra K Jain
- Department of Physics, 104 Davey Lab, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
10
|
Pan W, Baldwin KW, West KW, Pfeiffer LN, Tsui DC. Spin transition in the ν=8/3 fractional quantum Hall effect. PHYSICAL REVIEW LETTERS 2012; 108:216804. [PMID: 23003291 DOI: 10.1103/physrevlett.108.216804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Indexed: 06/01/2023]
Abstract
We present here the results from a density dependent study of the activation energy gaps of the fractional quantum Hall effect states at Landau level fillings ν=8/3 and 7/3 in a series of high quality quantum wells. In the density range from 0.5×10(11) to 3×10(11) cm(-2), the 7/3 energy gap increases monotonically with increasing density, supporting its ground state being spin polarized. For the 8/3 state, however, its energy gap first decreases with increasing density, almost vanishes at n~0.8×10(11) cm(-2), and then turns around and increases with increasing density, clearly demonstrating a spin transition.
Collapse
Affiliation(s)
- W Pan
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | | | | | | | | |
Collapse
|
11
|
Nuebler J, Friess B, Umansky V, Rosenow B, Heiblum M, von Klitzing K, Smet J. Quantized ν = 5/2 state in a two-subband quantum hall system. PHYSICAL REVIEW LETTERS 2012; 108:046804. [PMID: 22400875 DOI: 10.1103/physrevlett.108.046804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Indexed: 05/31/2023]
Abstract
The evolution of the fractional quantum Hall state at filling 5/2 is studied in density tunable two-dimensional electron systems formed in wide wells in which it is possible to induce a transition from single- to two-subband occupancy. In 80 and 60 nm wells, the quantum Hall state at 5/2 filling of the lowest subband is observed even when the second subband is occupied. In a 50 nm well, the 5/2 state vanishes upon second subband population. We attribute this distinct behavior to the width dependence of the capacitive energy for intersubband charge transfer and of the overlap of the subband probability densities.
Collapse
Affiliation(s)
- J Nuebler
- Max-Planck-Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Kou A, McClure DT, Marcus CM, Pfeiffer LN, West KW. Dynamic nuclear polarization in the fractional quantum Hall regime. PHYSICAL REVIEW LETTERS 2010; 105:056804. [PMID: 20867946 DOI: 10.1103/physrevlett.105.056804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Indexed: 05/29/2023]
Abstract
We investigate dynamic nuclear polarization in quantum point contacts (QPCs) in the integer and fractional quantum Hall regimes. Following the application of a dc bias, fractional plateaus in the QPC shift symmetrically about half filling of the lowest Landau level, ν=1/2, suggesting an interpretation in terms of composite fermions. Polarizing and detecting at different filling factors indicates that Zeeman energy is reduced by the induced nuclear polarization. Mapping effects from integer to fractional regimes extends the composite fermion picture to include hyperfine coupling.
Collapse
Affiliation(s)
- A Kou
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | |
Collapse
|
13
|
Ferreira GJ, Freire HJP, Egues JC. Many-body effects on the rho(xx) ringlike structures in two-subband wells. PHYSICAL REVIEW LETTERS 2010; 104:066803. [PMID: 20366846 DOI: 10.1103/physrevlett.104.066803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Indexed: 05/29/2023]
Abstract
The longitudinal resistivity rho(xx) of two-dimensional electron gases formed in wells with two subbands displays ringlike structures when plotted in a density-magnetic-field diagram, due to the crossings of spin-split Landau levels (LLs) from distinct subbands. Using spin density functional theory and linear response, we investigate the shape and spin polarization of these structures as a function of temperature and magnetic-field tilt angle. We find that (i) some of the rings "break" at sufficiently low temperatures due to a quantum Hall ferromagnetic phase transition, thus exhibiting a high degree of spin polarization (approximately 50%) within, consistent with the NMR data of Zhang et al. [Phys. Rev. Lett. 98, 246802 (2007)], and (ii) for increasing tilting angles the interplay between the anticrossings due to inter-LL couplings and the exchange-correlation effects leads to a collapse of the rings at some critical angle theta(c), in agreement with the data of Guo et al. [Phys. Rev. B 78, 233305 (2008)].
Collapse
Affiliation(s)
- Gerson J Ferreira
- Departamento de Física e Informática, Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, São Paulo, Brazil
| | | | | |
Collapse
|
14
|
Gusev GM, Bakarov AK, Lamas TE, Portal JC. Reentrant quantum Hall effect and anisotropic transport in a bilayer system at high filling factors. PHYSICAL REVIEW LETTERS 2007; 99:126804. [PMID: 17930539 DOI: 10.1103/physrevlett.99.126804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Indexed: 05/25/2023]
Abstract
We report on the measurements of the quantum Hall effect states in double quantum well structures at the filling factors nu=4N+1 and nu=4N+3, where N is the Landau index number, in the presence of the in-plane magnetic field. The quantum Hall states at these filling factors vanish and reappear several times and exhibit anisotropy. Repeated reentrance of the transport gap occurs due to the periodic vanishing of the tunneling amplitude in the presence of the in-plane field. Anisotropy demonstrates the existence of the stripes in the ground states.
Collapse
Affiliation(s)
- G M Gusev
- Instituto de Física da Universidade de São Paulo, CP 66318 CEP 05315-970, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
15
|
Freire HJP, Egues JC. Hysteretic resistance spikes in quantum hall ferromagnets without domains. PHYSICAL REVIEW LETTERS 2007; 99:026801. [PMID: 17678243 DOI: 10.1103/physrevlett.99.026801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Indexed: 05/16/2023]
Abstract
We use spin-density-functional theory to study recently reported hysteretic magnetoresistance rho(xx) spikes in Mn-based 2D electron gases [Phys. Rev. Lett. 89, 266802 (2002)10.1103/PhysRevLett.89.266802]. We find hysteresis loops in our calculated Landau fan diagrams and total energies signaling quantum Hall ferromagnet phase transitions. Spin-dependent exchange-correlation effects are crucial to stabilize the relevant magnetic phases arising from distinct symmetry-broken excited- and ground-state solutions of the Kohn-Sham equations. Besides hysteretic spikes in rho(xx), we predict hysteretic dips in the Hall resistance rho(xy). Our theory, without domain walls, satisfactorily explains the recent data.
Collapse
Affiliation(s)
- Henrique J P Freire
- Departamento de Física e Informática, Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, São Paulo, Brazil
| | | |
Collapse
|
16
|
Groshaus JG, Plochocka-Polack P, Rappaport M, Umansky V, Bar-Joseph I, Dennis BS, Pfeiffer LN, West KW, Gallais Y, Pinczuk A. Absorption in the fractional quantum Hall regime: trion dichroism and spin polarization. PHYSICAL REVIEW LETTERS 2007; 98:156803. [PMID: 17501371 DOI: 10.1103/physrevlett.98.156803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Indexed: 05/15/2023]
Abstract
We present measurements of optical interband absorption in the fractional quantum Hall regime in a GaAs quantum well in the range 0<nu<or=1. We investigate the mechanism of singlet trion absorption, and show that its circular dichroism can be used as a probe of the spin polarization of the ground state of the two-dimensional electron system (2DES). We find that at nu<or=1/3 the 2DES is fully spin polarized. Increasing the filling factor results in a gradual depolarization, with a sharp minimum in the dichroism near nu=2/3. We find that in the range 0.5<or=nu<0.85 the 2DES remains partially polarized for the broad range of magnetic fields from 2.75 to 11 T. This is consistent with the presence of a mixture of polarized and depolarized regions.
Collapse
Affiliation(s)
- J G Groshaus
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel and Bell Laboratories, Lucent Technology, Murray Hill, New Jersey 07974, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Koskinen M, Reimann SM, Nikkarila JP, Manninen M. Spectral properties of rotating electrons in quantum dots and their relation to quantum Hall liquids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2007; 19:076211. [PMID: 22251598 DOI: 10.1088/0953-8984/19/7/076211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The exact diagonalization technique is used to study many-particle properties of interacting electrons with spin, confined in a two-dimensional harmonic potential. The single-particle basis is limited to the lowest Landau level. The results are analysed as a function of the total angular momentum of the system. Only at angular momenta corresponding to the filling factors 1, 1/3, 1/5, etc is the system fully polarized. The lowest energy states exhibit spin waves, domains, and localization, depending on the angular momentum. Vortices exist only at excited polarized states. The high angular momentum limit shows localization of electrons and separation of the charge and spin excitations.
Collapse
Affiliation(s)
- M Koskinen
- NanoScience Center, Department of Physics, University of Jyväskylä, FIN-40014, Finland
| | | | | | | |
Collapse
|
18
|
Feil T, Deutschmann RA, Wegscheider W, Rother M, Schuh D, Bichler M, Abstreiter G, Rieder B, Keller J. Transport in weakly and strongly modulated two‐dimensional electron systems realized by Cleaved‐Edge‐Overgrowth. ACTA ACUST UNITED AC 2004. [DOI: 10.1002/pssc.200404768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- T. Feil
- Institut für Experimentalphysik, Universität Regensburg, 93040 Regensburg, Germany
| | - R. A. Deutschmann
- Walter Schottky Institut, TU München, Am Coulombwall, 85748 Garching, Germany
| | - W. Wegscheider
- Institut für Experimentalphysik, Universität Regensburg, 93040 Regensburg, Germany
| | - M. Rother
- Walter Schottky Institut, TU München, Am Coulombwall, 85748 Garching, Germany
| | - D. Schuh
- Walter Schottky Institut, TU München, Am Coulombwall, 85748 Garching, Germany
| | - M. Bichler
- Walter Schottky Institut, TU München, Am Coulombwall, 85748 Garching, Germany
| | - G. Abstreiter
- Walter Schottky Institut, TU München, Am Coulombwall, 85748 Garching, Germany
| | - B. Rieder
- Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany
| | - J. Keller
- Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
19
|
Smet JH, Deutschmann RA, Ertl F, Wegschei der W, Abstreiter G, von Klitzing K. Anomalous-filling-factor-dependent nuclear-spin polarization in a 2D electron system. PHYSICAL REVIEW LETTERS 2004; 92:086802. [PMID: 14995804 DOI: 10.1103/physrevlett.92.086802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Indexed: 05/24/2023]
Abstract
Spin-related electronic phase transitions in the fractional quantum Hall regime are accompanied by a large change in resistance. Combined with their sensitivity to spin orientation of nuclei residing in the same plane as the 2D electrons, they offer a convenient electrical probe to carry out nuclear magnetometry. Despite conditions which should allow both electronic and nuclear-spin subsystems to approach thermodynamic equilibrium, we uncover for the nuclei a remarkable and strongly electronic filling-factor-dependent deviation from the anticipated thermal nuclear-spin polarization.
Collapse
Affiliation(s)
- J H Smet
- Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
20
|
De Poortere EP, Tutuc E, Shayegan M. Critical resistance in the AlAs quantum Hall ferromagnet. PHYSICAL REVIEW LETTERS 2003; 91:216802. [PMID: 14683327 DOI: 10.1103/physrevlett.91.216802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Indexed: 05/24/2023]
Abstract
Magnetic transitions in AlAs two-dimensional electrons give rise to sharp resistance spikes within the quantum Hall effect. Such spikes are likely caused by carrier scattering at magnetic domain walls below the Curie temperature. We report a critical behavior in the temperature dependence of the spike width and amplitude, from which we deduce the Curie temperature of the quantum Hall ferromagnet. Our data also reveal that the Curie temperature increases monotonically with carrier density.
Collapse
Affiliation(s)
- E P De Poortere
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
21
|
Chen M, Kang W, Wegscheider W. Metamorphosis of the quantum Hall ferromagnet at nu=2/5. PHYSICAL REVIEW LETTERS 2003; 91:116804. [PMID: 14525452 DOI: 10.1103/physrevlett.91.116804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2002] [Indexed: 05/24/2023]
Abstract
We report on the dramatic evolution of the quantum Hall ferromagnet in the fractional quantum Hall regime at nu=2/5 filling. A large enhancement in the characteristic time scale gives rise to a dynamical transition into a novel quantized Hall state. The observed Hall state is determined to be a zero-temperature phase distinct from the spin-polarized and spin-unpolarized nu=2/5 fractional quantum Hall states. It is characterized by a strong temperature dependence and puzzling correlation between temperature and time.
Collapse
Affiliation(s)
- Michelle Chen
- James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
22
|
Jaroszyński J, Andrearczyk T, Karczewski G, Wróbel J, Wojtowicz T, Papis E, Kamińska E, Piotrowska A, Popović D, Dietl T. Ising quantum Hall ferromagnet in magnetically doped quantum wells. PHYSICAL REVIEW LETTERS 2002; 89:266802. [PMID: 12484847 DOI: 10.1103/physrevlett.89.266802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2002] [Indexed: 05/24/2023]
Abstract
We report on the observation of the Ising quantum Hall ferromagnet with Curie temperature T(C) as high as 2 K in a modulation-doped (Cd,Mn)Te heterostructure. In this system field-induced crossing of Landau levels occurs due to the giant spin-splitting effect. Magnetoresistance data, collected over a wide range of temperatures, magnetic fields, tilt angles, and electron densities, are discussed taking into account both Coulomb electron-electron interactions and s-d coupling to Mn spin fluctuations. The critical behavior of the resistance "spikes" at T-->T(C) corroborates theoretical suggestions that the ferromagnet is destroyed by domain excitations.
Collapse
Affiliation(s)
- J Jaroszyński
- Institute of Physics, Polish Academy of Sciences, aleja Lotników 32/46, 02-668 Warszawa, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kraus S, Stern O, Lok JGS, Dietsche W, Von Klitzing K, Bichler M, Schuh D, Wegscheider W. From quantum Hall ferromagnetism to huge longitudinal resistance at the 2/3 fractional quantum Hall state. PHYSICAL REVIEW LETTERS 2002; 89:266801. [PMID: 12484846 DOI: 10.1103/physrevlett.89.266801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2002] [Indexed: 05/24/2023]
Abstract
We observe the transition from a spin-unpolarized to a polarized nu=2/3 fractional quantum Hall state at low currents (<5 nA), recently described in terms of quantum Hall ferromagnetism, versus density and parallel magnetic field. At larger currents the time and current dependent huge longitudinal resistance (HLR) is always initiated at the transition. Transport in the HLR regime is linear and the amount of current-induced nuclear polarization in the HLR is comparable to the thermal nuclear polarization at approximately 20 mK and 10 T. A current-induced disorder in the nuclear polarization is speculated to cause the enhanced resistance in the HLR regime.
Collapse
Affiliation(s)
- S Kraus
- Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kumada N, Terasawa D, Shimoda Y, Azuhata H, Sawada A, Ezawa ZF, Muraki K, Saku T, Hirayama Y. Phase diagram of interacting composite fermions in the bilayer nu=2/3 quantum hall effect. PHYSICAL REVIEW LETTERS 2002; 89:116802. [PMID: 12225161 DOI: 10.1103/physrevlett.89.116802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2001] [Indexed: 05/23/2023]
Abstract
We study the phase diagram of composite fermions (CFs) in the presence of spin and pseudospin degrees of freedom in the bilayer nu=2/3 quantum Hall (QH) state. Activation studies elucidate the existence of three different QH states with two different types of hysteresis in the magnetotransport. While a noninteracting CF model provides a qualitative account of the phase diagram, the observed renormalization of tunneling gap and a non-QH state at high densities are not explained in the noninteracting CF model, and are suggested to be manifestations of interactions between CFs.
Collapse
Affiliation(s)
- N Kumada
- Department of Physics, Tohoku University, Sendai 980-8578, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Avishai Y, Meir Y. New spin-orbit-induced universality class in the integer quantum Hall regime. PHYSICAL REVIEW LETTERS 2002; 89:076602. [PMID: 12190544 DOI: 10.1103/physrevlett.89.076602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2001] [Indexed: 05/23/2023]
Abstract
Using heuristic arguments and numerical simulations it is argued that the critical exponent nu describing the localization length divergence at the integer quantum-Hall transition is modified in the presence of spin-orbit scattering with short-range correlations. The exponent is very close to nu=4/3, the percolation correlation length exponent, consistent with the prediction of a semiclassical argument. In addition, a band of weakly localized states is conjectured.
Collapse
Affiliation(s)
- Yshai Avishai
- Department of Physics and Ilse Katz Center for Meso- and Nanoscale Science and Technology, Ben Gurion University, Beer Sheva, Israel
| | | |
Collapse
|
26
|
Desrat W, Maude DK, Potemski M, Portal JC, Wasilewski ZR, Hill G. Resistively detected nuclear magnetic resonance in the quantum hall regime: possible evidence for a Skyrme crystal. PHYSICAL REVIEW LETTERS 2002; 88:256807. [PMID: 12097116 DOI: 10.1103/physrevlett.88.256807] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2002] [Indexed: 05/23/2023]
Abstract
Resistively detected nuclear magnetic resonance measurements have been performed on a high mobility heterostructure in the quantum Hall regime. At millikelvin temperatures the nuclear resonances are observed in the vicinity of various integer and fractional filling factors without previous dynamic nuclear polarization. Near nu = 1, the observed large enhancement of the resonance amplitude accompanied by a reduction of T1 strongly suggests a greatly increased coupling between the electronic and nuclear spin systems. This is consistent with the proposed coupling of the nuclear spin system to the Goldstone mode of the Skyrme crystal.
Collapse
Affiliation(s)
- W Desrat
- Grenoble High Magnetic Field Laboratory, Max Planck Institut für Festkörperforschung and Centre National de la Recherche Scientifique, BP 166, 38042 Grenoble Cedex 9, France
| | | | | | | | | | | |
Collapse
|
27
|
Hashimoto K, Muraki K, Saku T, Hirayama Y. Electrically controlled nuclear spin polarization and relaxation by quantum-Hall states. PHYSICAL REVIEW LETTERS 2002; 88:176601. [PMID: 12005770 DOI: 10.1103/physrevlett.88.176601] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2001] [Indexed: 05/23/2023]
Abstract
We study interactions between electrons and nuclear spins by using the resistance ( Rxx) peak which develops near the Landau-level filling factor nu = 2/3 as a probe. Temporarily tuning nu to a different value, nu(temp), with a gate demonstrates that the Rxx peak regenerates even after complete depletion ( nu(temp) = 0), while it rapidly relaxes on either side of nu(temp) = 1. This indicates that the nu = 2/3 domain morphology is memorized by the nuclear spins which can be rapidly depolarized by Skyrmions. An additional enhancement in the nuclear spin relaxation around nu = 1/2 and 3/2 suggests a Fermi sea of partially polarized composite fermions.
Collapse
Affiliation(s)
- K Hashimoto
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan.
| | | | | | | |
Collapse
|
28
|
Smet JH, Deutschmann RA, Ertl F, Wegscheider W, Abstreiter G, von Klitzing K. Gate-voltage control of spin interactions between electrons and nuclei in a semiconductor. Nature 2002; 415:281-6. [PMID: 11796998 DOI: 10.1038/415281a] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Semiconductors are ubiquitous in device electronics, because their charge distributions can be conveniently manipulated with voltages to perform logic operations. Achieving a similar level of control over the spin degrees of freedom, either from electrons or nuclei, could provide intriguing prospects for both information processing and the study of fundamental solid-state physics issues. Here we report procedures that carry out the controlled transfer of spin angular momentum between electrons-confined to two dimensions and subjected to a perpendicular magnetic field-and the nuclei of the host semiconductor, using gate voltages only. We show that the spin transfer rate can be enhanced near a ferromagnetic ground state of the electron system, and that the induced nuclear spin polarization can be subsequently stored and 'read out'. These techniques can also be combined into a spectroscopic tool to detect the low-energy collective excitations in the electron system that promote the spin transfer. The existence of such excitations is contingent on appropriate electron-electron correlations, and these can be tuned by changing, for example, the electron density via a gate voltage.
Collapse
Affiliation(s)
- J H Smet
- Max-Planck-Institut für Festkörperforschung, D-70569 Stuttgart, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Muraki K, Saku T, Hirayama Y. Charge excitations in easy-axis and easy-plane quantum Hall ferromagnets. PHYSICAL REVIEW LETTERS 2001; 87:196801. [PMID: 11690439 DOI: 10.1103/physrevlett.87.196801] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2001] [Indexed: 05/23/2023]
Abstract
We study charge excitations in quantum Hall ferromagnets realized in a symmetric quantum well. Landau levels (LLs) with different subband and orbital indices crossing at the Fermi level act as up and down pseudospin levels. The activation energy measured as a function of the pseudospin Zeeman energy, Delta(Z), reveals easy-plane and easy-axis ferromagnetism for LL filling of nu = 3 and 4, respectively, for which the crossing levels have parallel and antiparallel spin. For nu = 4, we observe a sharp reduction in the gap for Delta(Z)-->0, which we discuss in terms of a topological excitation in domain walls akin to Skyrmions.
Collapse
Affiliation(s)
- K Muraki
- NTT Basic Research Laboratories, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| | | | | |
Collapse
|