1
|
Hadad RE, Roy A, Rabani E, Redmer R, Baer R. Stochastic density functional theory combined with Langevin dynamics for warm dense matter. Phys Rev E 2024; 109:065304. [PMID: 39020867 DOI: 10.1103/physreve.109.065304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/17/2024] [Indexed: 07/19/2024]
Abstract
This study overviews and extends a recently developed stochastic finite-temperature Kohn-Sham density functional theory to study warm dense matter using Langevin dynamics, specifically under periodic boundary conditions. The method's algorithmic complexity exhibits nearly linear scaling with system size and is inversely proportional to the temperature. Additionally, a linear-scaling stochastic approach is introduced to assess the Kubo-Greenwood conductivity, demonstrating exceptional stability for dc conductivity. Utilizing the developed tools, we investigate the equation of state, radial distribution, and electronic conductivity of hydrogen at a temperature of 30 000 K. As for the radial distribution functions, we reveal a transition of hydrogen from gaslike to liquidlike behavior as its density exceeds 4g/cm^{3}. As for the electronic conductivity as a function of the density, we identified a remarkable isosbestic point at frequencies around 7 eV, which may be an additional signature of a gas-liquid transition in hydrogen at 30 000 K.
Collapse
Affiliation(s)
| | | | - Eran Rabani
- Department of Chemistry, University of California, Berkeley, California 94720, USA; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; and The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
2
|
Tian C, Liu F, Yuan H, Chen H, Gan Y. First-principles equation of state of liquid hydrogen and dissociative transition. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:015401. [PMID: 32932242 DOI: 10.1088/1361-648x/abb896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The properties of dense hot hydrogen, in particular the phase transition between the molecular insulating and atomic conductive states, are important in the fields of astrophysics and high-pressure physics. Previous ab initio calculations suggested the metallization in liquid hydrogen, accompanied by dissociation, is a first-order phase transition and ends at a critical point in temperature range between 1500 and 2000 K and pressure close to 100 GPa. Using density functional theoretical molecular dynamics simulations, we report a first-principles equation of state of hydrogen that covers dissociation transition conditions at densities ranging from 0.20 to 1.00 g/cc and temperatures of 600-9000 K. Our results clearly indicate that a drop in pressure and a sharp structural change still occur as the system transforms from a diatomic to monoatomic phase at temperatures above 2000 K, and support the first-order phase transition in liquid hydrogen would end in the temperature about 4500 K.
Collapse
Affiliation(s)
- Chunling Tian
- School of Physical Science and Technology, Southwest University, Chongqing 400715, People's Republic of China
| | - Fusheng Liu
- Institute of High Pressure Physics, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Hongkuan Yuan
- School of Physical Science and Technology, Southwest University, Chongqing 400715, People's Republic of China
| | - Hong Chen
- School of Physical Science and Technology, Southwest University, Chongqing 400715, People's Republic of China
| | - Yundan Gan
- Xi'an institute of modern chemistry, Xian 710000, People's Republic of China
| |
Collapse
|
3
|
Militzer B, González-Cataldo F, Zhang S, Driver KP, Soubiran F. First-principles equation of state database for warm dense matter computation. Phys Rev E 2021; 103:013203. [PMID: 33601631 DOI: 10.1103/physreve.103.013203] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
We put together a first-principles equation of state (FPEOS) database for matter at extreme conditions by combining results from path integral Monte Carlo and density functional molecular dynamics simulations of the elements H, He, B, C, N, O, Ne, Na, Mg, Al, and Si as well as the compounds LiF, B_{4}C, BN, CH_{4}, CH_{2}, C_{2}H_{3}, CH, C_{2}H, MgO, and MgSiO_{3}. For all these materials, we provide the pressure and internal energy over a density-temperature range from ∼0.5 to 50 g cm^{-3} and from ∼10^{4} to 10^{9} K, which are based on ∼5000 different first-principles simulations. We compute isobars, adiabats, and shock Hugoniot curves in the regime of L- and K-shell ionization. Invoking the linear mixing approximation, we study the properties of mixtures at high density and temperature. We derive the Hugoniot curves for water and alumina as well as for carbon-oxygen, helium-neon, and CH-silicon mixtures. We predict the maximal shock compression ratios of H_{2}O, H_{2}O_{2}, Al_{2}O_{3}, CO, and CO_{2} to be 4.61, 4.64, 4.64, 4.89, and 4.83, respectively. Finally we use the FPEOS database to determine the points of maximum shock compression for all available binary mixtures. We identify mixtures that reach higher shock compression ratios than their end members. We discuss trends common to all mixtures in pressure-temperature and particle-shock velocity spaces. In the Supplemental Material, we provide all FPEOS tables as well as computer codes for interpolation, Hugoniot calculations, and plots of various thermodynamic functions.
Collapse
Affiliation(s)
- Burkhard Militzer
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
- Department of Astronomy, University of California, Berkeley, California 94720, USA
| | - Felipe González-Cataldo
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
| | - Shuai Zhang
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - Kevin P Driver
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - François Soubiran
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
- CEA DAM-DIF, 91297 Arpajon, France
| |
Collapse
|
4
|
Militzer B, González-Cataldo F, Zhang S, Whitley HD, Swift DC, Millot M. Nonideal mixing effects in warm dense matter studied with first-principles computer simulations. J Chem Phys 2020; 153:184101. [DOI: 10.1063/5.0023232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Burkhard Militzer
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
- Department of Astronomy, University of California, Berkeley, California 94720, USA
| | - Felipe González-Cataldo
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
| | - Shuai Zhang
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - Heather D. Whitley
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Damian C. Swift
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Marius Millot
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
5
|
White AJ, Collins LA. Fast and Universal Kohn-Sham Density Functional Theory Algorithm for Warm Dense Matter to Hot Dense Plasma. PHYSICAL REVIEW LETTERS 2020; 125:055002. [PMID: 32794867 DOI: 10.1103/physrevlett.125.055002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/09/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Understanding many processes, e.g., fusion experiments, planetary interiors, and dwarf stars, depends strongly on microscopic physics modeling of warm dense matter and hot dense plasma. This complex state of matter consists of a transient mixture of degenerate and nearly free electrons, molecules, and ions. This regime challenges both experiment and analytical modeling, necessitating predictive ab initio atomistic computation, typically based on quantum mechanical Kohn-Sham density functional theory (KS-DFT). However, cubic computational scaling with temperature and system size prohibits the use of DFT through much of the warm dense matter regime. A recently developed stochastic approach to KS-DFT can be used at high temperatures, with the exact same accuracy as the deterministic approach, but the stochastic error can converge slowly and it remains expensive for intermediate temperatures (<50 eV). We have developed a universal mixed stochastic-deterministic algorithm for DFT at any temperature. This approach leverages the physics of KS-DFT to seamlessly integrate the best aspects of these different approaches. We demonstrate that this method significantly accelerated self-consistent field calculations for temperatures from 3 to 50 eV, while producing stable molecular dynamics and accurate diffusion coefficients.
Collapse
Affiliation(s)
- A J White
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - L A Collins
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
6
|
Soubiran F, González-Cataldo F, Driver KP, Zhang S, Militzer B. Magnesium oxide at extreme temperatures and pressures studied with first-principles simulations. J Chem Phys 2019; 151:214104. [DOI: 10.1063/1.5126624] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- François Soubiran
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
- École Normale Supérieure de Lyon, Université Lyon 1, Laboratoire de Géologie de Lyon, CNRS UMR 5276, 69364 Lyon Cedex 07, France
| | - Felipe González-Cataldo
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
| | - Kevin P. Driver
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Shuai Zhang
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - Burkhard Militzer
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
- Department of Astronomy, University of California, Berkeley, California 94720, USA
| |
Collapse
|
7
|
Tian C, Liu F, Yuan H, Chen H, Kuan A. First-order liquid-liquid phase transition in compressed hydrogen and critical point. J Chem Phys 2019; 150:204114. [PMID: 31153203 DOI: 10.1063/1.5096400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
One of the fundamental problems relating to the properties of hydrogen is that of insulator-metal transition. Recent theoretical and experimental studies show that the metallization in liquid hydrogen could be a first-order phase transition and involve molecular to atomic transition. However, the location of the critical point is still an unresolved question. Earlier studies reported the critical point at a temperature of 1500-2000 K, but recent experimental observations on diamond-anvil cells show that the discontinuous transition still persists at temperatures well above 2000 K. We have carried out a detailed study on the liquid-liquid phase transition in dense hydrogen by uisng ab initio molecular dynamics simulations and found new evidence for the abrupt metallization between weakly dissociated and strongly dissociated fluid phases at temperatures as high as 3000 and 4000 K. Also, the predicted phase boundary is in excellent agreement with the recent experiments. Our results suggest that this first-order transition in liquid hydrogen likely ends in a critical point around 4000 K, which is significantly higher than the previous theoretical predictions.
Collapse
Affiliation(s)
- Chunling Tian
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Fusheng Liu
- Institute of High Pressure Physics, Southwest Jiaotong University, Chengdu 610031, China
| | - Hongkuan Yuan
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Hong Chen
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Anlong Kuan
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
|
9
|
Zhang S, Militzer B, Gregor MC, Caspersen K, Yang LH, Gaffney J, Ogitsu T, Swift D, Lazicki A, Erskine D, London RA, Celliers PM, Nilsen J, Sterne PA, Whitley HD. Theoretical and experimental investigation of the equation of state of boron plasmas. Phys Rev E 2018; 98:023205. [PMID: 30253522 DOI: 10.1103/physreve.98.023205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Indexed: 06/08/2023]
Abstract
We report a theoretical equation of state (EOS) table for boron across a wide range of temperatures (5.1×10^{4}-5.2×10^{8} K) and densities (0.25-49 g/cm^{3}) and experimental shock Hugoniot data at unprecedented high pressures (5608±118 GPa). The calculations are performed with first-principles methods combining path-integral Monte Carlo (PIMC) at high temperatures and density-functional-theory molecular-dynamics (DFT-MD) methods at lower temperatures. PIMC and DFT-MD cross-validate each other by providing coherent EOS (difference <1.5 Hartree/boron in energy and <5% in pressure) at 5.1×10^{5} K. The Hugoniot measurement is conducted at the National Ignition Facility using a planar shock platform. The pressure-density relation found in our shock experiment is on top of the shock Hugoniot profile predicted with our first-principles EOS and a semiempirical EOS table (LEOS 50). We investigate the self-diffusivity and the effect of thermal and pressure-driven ionization on the EOS and shock compression behavior in high-pressure and -temperature conditions. We also study the sensitivity of a polar direct-drive exploding pusher platform to pressure variations based on applying pressure multipliers to LEOS 50 and by utilizing a new EOS model based on our ab initio simulations via one-dimensional radiation-hydrodynamic calculations. The results are valuable for future theoretical and experimental studies and engineering design in high-energy density research.
Collapse
Affiliation(s)
- Shuai Zhang
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Burkhard Militzer
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
- Department of Astronomy, University of California, Berkeley, California 94720, USA
| | - Michelle C Gregor
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Kyle Caspersen
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Lin H Yang
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Jim Gaffney
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Tadashi Ogitsu
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Damian Swift
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Amy Lazicki
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - D Erskine
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Richard A London
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - P M Celliers
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Joseph Nilsen
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Philip A Sterne
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Heather D Whitley
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
10
|
Zhang S, Militzer B, Benedict LX, Soubiran F, Sterne PA, Driver KP. Path integral Monte Carlo simulations of dense carbon-hydrogen plasmas. J Chem Phys 2018; 148:102318. [DOI: 10.1063/1.5001208] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Shuai Zhang
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Burkhard Militzer
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
- Department of Astronomy, University of California, Berkeley, California 94720, USA
| | - Lorin X. Benedict
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - François Soubiran
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
| | - Philip A. Sterne
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Kevin P. Driver
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
11
|
Zhang S, Driver KP, Soubiran F, Militzer B. First-principles equation of state and shock compression predictions of warm dense hydrocarbons. Phys Rev E 2017; 96:013204. [PMID: 29347225 DOI: 10.1103/physreve.96.013204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Indexed: 06/07/2023]
Abstract
We use path integral Monte Carlo and density functional molecular dynamics to construct a coherent set of equations of state (EOS) for a series of hydrocarbon materials with various C:H ratios (2:1, 1:1, 2:3, 1:2, and 1:4) over the range of 0.07-22.4gcm^{-3} and 6.7×10^{3}-1.29×10^{8}K. The shock Hugoniot curve derived for each material displays a single compression maximum corresponding to K-shell ionization. For C:H = 1:1, the compression maximum occurs at 4.7-fold of the initial density and we show radiation effects significantly increase the shock compression ratio above 2 Gbar, surpassing relativistic effects. The single-peaked structure of the Hugoniot curves contrasts with previous work on higher-Z plasmas, which exhibit a two-peak structure corresponding to both K- and L-shell ionization. Analysis of the electronic density of states reveals that the change in Hugoniot structure is due to merging of the L-shell eigenstates in carbon, while they remain distinct for higher-Z elements. Finally, we show that the isobaric-isothermal linear mixing rule for carbon and hydrogen EOS is a reasonable approximation with errors better than 1% for stellar-core conditions.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
| | - Kevin P Driver
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
| | - François Soubiran
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
| | - Burkhard Militzer
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA and Department of Astronomy, University of California, Berkeley, California 94720, USA
| |
Collapse
|
12
|
Zhang S, Driver KP, Soubiran F, Militzer B. Equation of state and shock compression of warm dense sodium—A first-principles study. J Chem Phys 2017; 146:074505. [DOI: 10.1063/1.4976559] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Shuai Zhang
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
| | - Kevin P. Driver
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
| | - François Soubiran
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
| | - Burkhard Militzer
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
- Department of Astronomy, University of California, Berkeley, California 94720, USA
| |
Collapse
|
13
|
Danel JF, Kazandjian L, Piron R. Equation of state of warm dense deuterium and its isotopes from density-functional theory molecular dynamics. Phys Rev E 2016; 93:043210. [PMID: 27176421 DOI: 10.1103/physreve.93.043210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Indexed: 06/05/2023]
Abstract
Of the two approaches of density-functional theory molecular dynamics, quantum molecular dynamics is limited at high temperature by computational cost whereas orbital-free molecular dynamics, based on an approximation of the kinetic electronic free energy, can be implemented in this domain. In the case of deuterium, it is shown how orbital-free molecular dynamics can be regarded as the limit of quantum molecular dynamics at high temperature for the calculation of the equation of state. To this end, accurate quantum molecular dynamics calculations are performed up to 20 eV at mass densities as low as 0.5g/cm^{3} and up to 10 eV at mass densities as low as 0.2g/cm^{3}. As a result, the limitation in temperature so far attributed to quantum molecular dynamics is overcome and an approach combining quantum and orbital-free molecular dynamics is used to construct an equation of state of deuterium. The thermodynamic domain addressed is that of the fluid phase above 1 eV and 0.2g/cm^{3}. Both pressure and internal energy are calculated as functions of temperature and mass density, and various exchange-correlation contributions are compared. The generalized gradient approximation of the exchange-correlation functional, corrected to approximately include the influence of temperature, is retained and the results obtained are compared to other approaches and to experimental shock data; in parts of the thermodynamic domain addressed, these results significantly differ from those obtained in other first-principles investigations which themselves disagree. The equations of state of hydrogen and tritium above 1 eV and above, respectively, 0.1g/cm^{3} and 0.3g/cm^{3}, can be simply obtained by mass density scaling from the results found for deuterium. This ab initio approach allows one to consistently cover a very large domain of temperature on the domain of mass density outlined above.
Collapse
Affiliation(s)
- J-F Danel
- CEA, DAM, DIF, F-91297 Arpajon, France
| | | | - R Piron
- CEA, DAM, DIF, F-91297 Arpajon, France
| |
Collapse
|
14
|
Militzer B, Driver KP. Development of Path Integral Monte Carlo Simulations with Localized Nodal Surfaces for Second-Row Elements. PHYSICAL REVIEW LETTERS 2015; 115:176403. [PMID: 26551129 DOI: 10.1103/physrevlett.115.176403] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Indexed: 06/05/2023]
Abstract
We extend the applicability range of fermionic path integral Monte Carlo simulations to heavier elements and lower temperatures by introducing various localized nodal surfaces. Hartree-Fock nodes yield the most accurate prediction for pressure and internal energy, which we combine with the results from density functional molecular dynamics simulations to obtain a consistent equation of state for hot, dense silicon under plasma conditions and in the regime of warm dense matter (2.3-18.6 g cm(-3), 5.0×10(5)-1.3×10(8) K). The shock Hugoniot curve is derived and the structure of the fluid is characterized with various pair correlation functions.
Collapse
Affiliation(s)
- Burkhard Militzer
- Department of Earth and Planetary Science, University of California, Berkeley 94720, USA
- Department of Astronomy, University of California, Berkeley 94720, USA
| | - Kevin P Driver
- Department of Earth and Planetary Science, University of California, Berkeley 94720, USA
| |
Collapse
|
15
|
Hu SX, Collins LA, Goncharov VN, Boehly TR, Epstein R, McCrory RL, Skupsky S. First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:033111. [PMID: 25314551 DOI: 10.1103/physreve.90.033111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Indexed: 06/04/2023]
Abstract
Accurate knowledge of the optical properties of a warm dense deuterium-tritium (DT) mixture is important for reliable design of inertial confinement fusion (ICF) implosions using radiation-hydrodynamics simulations. The opacity of a warm dense DT shell essentially determines how much radiation from hot coronal plasmas can be deposited in the DT fuel of an imploding capsule. Even for the simplest species of hydrogen, the accurate calculation of their opacities remains a challenge in the warm-dense matter regime because strong-coupling and quantum effects play an important role in such plasmas. With quantum-molecular-dynamics (QMD) simulations, we have derived a first-principles opacity table (FPOT) of deuterium (and the DT mixture by mass scaling) for a wide range of densities from ρ(D)=0.5 to 673.518g/cm(3) and temperatures from T=5000K up to the Fermi temperature T(F) for each density. Compared with results from the astrophysics opacity table (AOT) currently used in our hydrocodes, the FPOT of deuterium from our QMD calculations has shown a significant increase in opacity for strongly coupled and degenerate plasma conditions by a factor of 3-100 in the ICF-relevant photon-energy range. As conditions approach those of classical plasma, the opacity from the FPOT converges to the corresponding values of the AOT. By implementing the FPOT of deuterium and the DT mixture into our hydrocodes, we have performed radiation-hydrodynamics simulations for low-adiabat cryogenic DT implosions on the OMEGA laser and for direct-drive-ignition designs for the National Ignition Facility. The simulation results using the FPOT show that the target performance (in terms of neutron yield and energy gain) could vary from ∼10% up to a factor of ∼2 depending on the adiabat of the imploding DT capsule; the lower the adiabat, the more variation is seen in the prediction of target performance when compared to the AOT modeling.
Collapse
Affiliation(s)
- S X Hu
- Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299, USA
| | - L A Collins
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - V N Goncharov
- Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299, USA
| | - T R Boehly
- Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299, USA
| | - R Epstein
- Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299, USA
| | - R L McCrory
- Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299, USA
| | - S Skupsky
- Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299, USA
| |
Collapse
|
16
|
Hu SX, Boehly TR, Collins LA. Properties of warm dense polystyrene plasmas along the principal Hugoniot. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:063104. [PMID: 25019901 DOI: 10.1103/physreve.89.063104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Indexed: 06/03/2023]
Abstract
Polystyrene (CH) is often chosen as the ablator material for inertial confinement fusion (ICF) targets. Its static, dynamical, and optical properties in warm, dense conditions (due to shock compression) are important for ICF designs. Using the first-principles quantum molecular dynamics (QMD) method, we have investigated the equation of state (EOS) and optical reflectivity of shock-compressed CH up to an unprecedentedly high pressure of 62 Mbar along the principal Hugoniot. The QMD results are compared with existing experimental measurements as well as the SESAME EOS model. Although the Hugoniot pressure and/or temperature from QMD calculations agrees with experiments and the SESAME EOS model at low pressures below 10 Mbar, we have identified for the first time a stiffer behavior of shocked CH at higher pressures (>10 Mbar). Such a stiffer behavior of warm, dense CH can affect the ablation pressure (shock strength), shock coalescence dynamics, and nonuniformity growth in ICF implosions. In addition, we corrected the mistake made in literature for calculating the reflectivity of shocked CH and obtained good agreements with experimental measurements, which should lend credence to future opacity calculations in a first-principles fashion.
Collapse
Affiliation(s)
- S X Hu
- Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623, USA
| | - T R Boehly
- Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623, USA
| | - L A Collins
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
17
|
Hu SX, Collins LA, Boehly TR, Kress JD, Goncharov VN, Skupsky S. First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:043105. [PMID: 24827353 DOI: 10.1103/physreve.89.043105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Indexed: 06/03/2023]
Abstract
Thermal conductivity (κ) of both the ablator materials and deuterium-tritium (DT) fuel plays an important role in understanding and designing inertial confinement fusion (ICF) implosions. The extensively used Spitzer model for thermal conduction in ideal plasmas breaks down for high-density, low-temperature shells that are compressed by shocks and spherical convergence in imploding targets. A variety of thermal-conductivity models have been proposed for ICF hydrodynamic simulations of such coupled and degenerate plasmas. The accuracy of these κ models for DT plasmas has recently been tested against first-principles calculations using the quantum molecular-dynamics (QMD) method; although mainly for high densities (ρ > 100 g/cm3), large discrepancies in κ have been identified for the peak-compression conditions in ICF. To cover the wide range of density-temperature conditions undergone by ICF imploding fuel shells, we have performed QMD calculations of κ for a variety of deuterium densities of ρ = 1.0 to 673.518 g/cm3, at temperatures varying from T = 5 × 103 K to T = 8 × 106 K. The resulting κQMD of deuterium is fitted with a polynomial function of the coupling and degeneracy parameters Γ and θ, which can then be used in hydrodynamic simulation codes. Compared with the "hybrid" Spitzer-Lee-More model currently adopted in our hydrocode lilac, the hydrosimulations using the fitted κQMD have shown up to ∼20% variations in predicting target performance for different ICF implosions on OMEGA and direct-drive-ignition designs for the National Ignition Facility (NIF). The lower the adiabat of an imploding shell, the more variations in predicting target performance using κQMD. Moreover, the use of κQMD also modifies the shock conditions and the density-temperature profiles of the imploding shell at early implosion stage, which predominantly affects the final target performance. This is in contrast to the previous speculation that κQMD changes mainly the inside ablation process during the hot-spot formation of an ICF implosion.
Collapse
Affiliation(s)
- S X Hu
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - L A Collins
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - T R Boehly
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - J D Kress
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - V N Goncharov
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| | - S Skupsky
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623, USA
| |
Collapse
|
18
|
Brown E, Morales MA, Pierleoni C, Ceperley D. Quantum Monte Carlo Techniques and Applications for Warm Dense Matter. LECTURE NOTES IN COMPUTATIONAL SCIENCE AND ENGINEERING 2014. [DOI: 10.1007/978-3-319-04912-0_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
19
|
|
20
|
Sha X, Cohen RE. Finite-temperature magnetism in bcc Fe under compression. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:372201. [PMID: 21403188 DOI: 10.1088/0953-8984/22/37/372201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We investigate the contributions of finite-temperature magnetic fluctuations to the thermodynamic properties of bcc Fe as functions of pressure. First, we apply a tight-binding total-energy model parameterized to first-principles linearized augmented plane-wave computations to examine various ferromagnetic, anti-ferromagnetic, and noncollinear spin spiral states at zero temperature. The tight-binding data are fit to a generalized Heisenberg Hamiltonian to describe the magnetic energy functional based on local moments. We then use Monte Carlo simulations to compute the magnetic susceptibility, the Curie temperature, heat capacity, and magnetic free energy. Including the finite-temperature magnetism improves the agreement with experiment for the calculated thermal expansion coefficients.
Collapse
Affiliation(s)
- Xianwei Sha
- Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, USA
| | | |
Collapse
|
21
|
Hu SX, Militzer B, Goncharov VN, Skupsky S. Strong coupling and degeneracy effects in inertial confinement fusion implosions. PHYSICAL REVIEW LETTERS 2010; 104:235003. [PMID: 20867248 DOI: 10.1103/physrevlett.104.235003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Indexed: 05/29/2023]
Abstract
Accurate knowledge about the equation of state (EOS) of deuterium is critical to inertial confinement fusion (ICF). Low-adiabat ICF implosions routinely access strongly coupled and degenerate plasma conditions. Using the path integral Monte Carlo method, we have derived a first-principles EOS (FPEOS) table of deuterium. It is the first ab initio EOS table which completely covers typical ICF implosion trajectory in the density and temperature ranges of ρ=0.002-1596 g/cm3 and T=1.35 eV-5.5 keV. Discrepancies in internal energy and pressure have been found in strongly coupled and degenerate regimes with respect to SESAME EOS. Hydrodynamics simulations of cryogenic ICF implosions using the FPEOS table have indicated significant differences in peak density, areal density (ρR), and neutron yield relative to SESAME simulations.
Collapse
Affiliation(s)
- S X Hu
- Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623, USA.
| | | | | | | |
Collapse
|
22
|
Redmer R, Holst B. Metal–Insulator Transition in Dense Hydrogen. METAL-TO-NONMETAL TRANSITIONS 2010. [DOI: 10.1007/978-3-642-03953-9_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Redmer R, Juranek H, Kuhlbrodt S, Schwarz V. Equation of State and Electrical Conductivity of Dense Fluid Hydrogen and Helium. ACTA ACUST UNITED AC 2009. [DOI: 10.1524/zpch.217.7.783.20400] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
The equation of state of fluid hydrogen, helium, and their mixtures is determined within fluid variational theory. Reactions between the constituents such as dissociation and ionization are considered. Results are given for densities and temperatures relevant for the interior of giant planets. Furthermore, the electrical conductivity is determined within linear response theory. Comparison is performed with available experiments and other theoretical work.
Collapse
|
24
|
Benuzzi-Mounaix A, Loupias B, Koenig M, Ravasio A, Ozaki N, Rabec le Gloahec M, Vinci T, Aglitskiy Y, Faenov A, Pikuz T, Boehly T. Density measurement of low- Z shocked material from monochromatic x-ray two-dimensional images. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:045402. [PMID: 18517682 DOI: 10.1103/physreve.77.045402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Indexed: 05/26/2023]
Abstract
An experiment on LULI 2000 laser devoted to density determination of shocked plastic from a two-dimensional monochromatic x-ray radiography is presented. A spherical quartz crystal was set to select the He-alpha line of vanadium at 2.382 A and perform the image of the main target. Rear side diagnostics were implemented to validate the new diagnostic. The density experimental results given by radiography are in good agreement with rear side diagnostics data and hydrodynamical simulations. The pressure regime into the plastic is 2-3 Mbar, corresponding to a compression between 2.7-2.9.
Collapse
Affiliation(s)
- A Benuzzi-Mounaix
- Laboratoire pour l'Utilisation des Lasers Intenses, UMR7605, CNRS-CEA, Université Paris VI, Ecole Polytechnique, 91128 Palaiseau Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sumi T, Sekino H. Metal-nonmetal transition in dense fluid hydrogen. J Chem Phys 2008; 128:044712. [DOI: 10.1063/1.2824930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Jakob B, Reinhard PG, Toepffer C, Zwicknagel G. Wave packet simulation of dense hydrogen. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 76:036406. [PMID: 17930350 DOI: 10.1103/physreve.76.036406] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 05/31/2007] [Indexed: 05/25/2023]
Abstract
Dense hydrogen is studied in the framework of wave packet molecular dynamics. In this semiquantal many-body simulation method the electrons are represented by wave packets which are suitably parametrized. The equilibrium properties and time evolution of the system are obtained with the help of a variational principle. At room temperature the results for the isotherms are in good agreement with anvil experiments. At higher densities beyond the range of the experimental data a transition from a molecular to a metallic state is predicted. The wave packets become delocalized and the electrical conductivity increases sharply. The phase diagram is calculated in a wide range of the pressure-density-temperature space. The observed transition from the molecular to metallic state is accompanied by an increase in density in agreement with recent reverberating shock wave experiments.
Collapse
Affiliation(s)
- B Jakob
- Institut für Theoretische Physik II, Universität Erlangen-Nürnberg, Staudtstrasse 7, D-91058 Erlangen, Germany
| | | | | | | |
Collapse
|
27
|
Militzer B. First principles calculations of shock compressed fluid helium. PHYSICAL REVIEW LETTERS 2006; 97:175501. [PMID: 17155480 DOI: 10.1103/physrevlett.97.175501] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Indexed: 05/12/2023]
Abstract
The properties of hot dense helium at megabar pressures are studied with two first principles computer simulation techniques: path integral Monte Carlo simulation and density functional molecular dynamics. The simulations predict that the compressibility of helium is substantially increased by electronic excitations that are present in the hot fluid at thermodynamic equilibrium. A maximum compression ratio of 5.24(4)-fold the initial density was predicted for 360 GPa and 150,000 K. This result distinguishes helium from deuterium, for which simulations predicted a maximum compression ratio of 4.3(1). Hugoniot curves for statically precompressed samples are also discussed.
Collapse
Affiliation(s)
- B Militzer
- Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, NW, Washington, DC 20015, USA
| |
Collapse
|
28
|
Chabrier G, Saumon D, Potekhin AY. Dense plasmas in astrophysics: from giant planets to neutron stars. ACTA ACUST UNITED AC 2006. [DOI: 10.1088/0305-4470/39/17/s16] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
29
|
Jacobi S, Baer R. Variational grand-canonical electronic structure method for open systems. J Chem Phys 2005; 123:044112. [PMID: 16095351 DOI: 10.1063/1.1949202] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
An ab initio method is developed for variational grand-canonical molecular electronic structure of open systems based on the Gibbs-Peierls-Boguliobov inequality. We describe the theory and a practical method for performing the calculations within standard quantum chemistry codes using Gaussian basis sets. The computational effort scales similarly to the ground-state Hartree-Fock method. The quality of the approximation is studied on a hydrogen molecule by comparing to the exact Gibbs free energy, computed using full configuration-interaction calculations. We find the approximation quite accurate, with errors similar to those of the Hartree-Fock method for ground-state (zero-temperature) calculations. A further demonstration is given of the temperature effects on the bending potential curve for water. Some future directions and applications of the method are discussed. Several appendices give the mathematical and algorithmic details of the method.
Collapse
Affiliation(s)
- Shlomit Jacobi
- Department of Physical Chemistry and the Lise Meitner Center for Quantum Chemistry, the Hebrew University of Jerusalem, Jerusalem 91904 Israel
| | | |
Collapse
|
30
|
Schwarz V, Juranek H, Redmer R. Noble gases and hydrogen at high pressures. Phys Chem Chem Phys 2005; 7:1990-5. [DOI: 10.1039/b501476j] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Bezkrovniy V, Schlanges M, Kremp D, Kraeft WD. Reaction ensemble Monte Carlo technique and hypernetted chain approximation study of dense hydrogen. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2004; 69:061204. [PMID: 15244551 DOI: 10.1103/physreve.69.061204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2003] [Indexed: 05/24/2023]
Abstract
In spite of the simple structure of hydrogen, up to now there is no unified theoretical and experimental description of hydrogen at high pressures. Recent results of Z-pinch experiments show a large deviation from those obtained by laser driven ones. Theoretical investigations including ab initio computer simulations show considerable differences at such extreme conditions from each other and from experimental values. We apply the reaction ensemble Monte Carlo technique on one hand and a combination of the hypernetted chain approximation with the mass action law on the other to study the behavior of dense hydrogen at such conditions. The agreement between both methods for the equation of state and for the Hugoniot curve is excellent. Comparison to other methods and experimental results is also performed.
Collapse
Affiliation(s)
- V Bezkrovniy
- Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, Domstrasse 10a, D-17487 Greifswald, Germany
| | | | | | | |
Collapse
|
32
|
Vorberger J, Schlanges M, Kraeft WD. Equation of state for weakly coupled quantum plasmas. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2004; 69:046407. [PMID: 15169106 DOI: 10.1103/physreve.69.046407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Indexed: 05/24/2023]
Abstract
We calculate thermodynamic properties for a dense hydrogen plasma and a quantum electron gas using thermodynamic Green's function techniques. Our perturbation approach is appropriate to give reliable results in the weak coupling regime. In particular, the contribution of the exchange term of the order e(4) is fully included for the nondegenerate case as well as for the dense highly degenerate quantum region. We compare our results for the equation of state with data obtained by different numerical simulations.
Collapse
Affiliation(s)
- J Vorberger
- Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, Domstrasse 10a, 17489 Greifswald, Germany.
| | | | | |
Collapse
|
33
|
Matsuishi K, Gregoryanz E, Mao HK, Hemley RJ. Equation of state and intermolecular interactions in fluid hydrogen from Brillouin scattering at high pressures and temperatures. J Chem Phys 2003. [DOI: 10.1063/1.1575196] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
34
|
Nellis WJ. Shock compression of deuterium near 100 GPa pressures. PHYSICAL REVIEW LETTERS 2002; 89:165502. [PMID: 12398734 DOI: 10.1103/physrevlett.89.165502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2002] [Indexed: 05/24/2023]
Abstract
The shock-compression curve (Hugoniot) of D2 near 100 GPa pressures (1 Mbar) has been contro-versial because the two published measurements have limiting compressions of fourfold and sixfold. Our purpose is to examine published experimental results to decide which, if either, is probably correct. The published Hugoniot data of low-Z diatomic molecules have a universal behavior. The deuterium data of Knudson et al. (fourfold limiting compression) have this universal behavior, which suggests that Knudson et al. are correct and shows that deuterium behaves as other low-Z elements at high tem-peratures. In D2, H2, N2, CO, and O2, dissociation completes and average kinetic energy dominates average potential energy above approximately 60 GPa. Below approximately 30 GPa, D2, H2, N2, CO, and O2 are diatomic. D2 dissociation is accompanied by a temperature-driven nonmetal-metal transition at approximately 50 GPa.
Collapse
Affiliation(s)
- W J Nellis
- Lawrence Livermore National Laboratory, University of California, 94550, USA
| |
Collapse
|
35
|
Kraeft WD, Schlanges M, Vorberger J, DeWitt HE. Kinetic and correlation energies and distribution functions of dense plasmas. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2002; 66:046405. [PMID: 12443328 DOI: 10.1103/physreve.66.046405] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2002] [Indexed: 05/24/2023]
Abstract
The mean value of the kinetic energy of a quantum plasma is investigated in Hartree-Fock and Montroll-Ward approximations using the method of thermodynamic Green's functions. Usually, one finds the kinetic energy to be larger than that of an ideal plasma due to the interaction between the particles in the system. However, also the opposite case is possible, i.e., a decrease of the kinetic energy compared to that of the ideal gas. This special correlation effect is found for temperatures of about 10(6) K and densities between 10(21) and 10(26) cm(-3). Here, the single-particle distribution function is shifted towards smaller momenta, and the binary distribution is changed.
Collapse
Affiliation(s)
- W D Kraeft
- Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, Domstrasse 10a, Germany
| | | | | | | |
Collapse
|