1
|
Giacomazzi L, Martin-Samos L, Richard N, Ceresoli D, Alessi A. Identification of paramagnetic centers in irradiated Sn-doped silicon dioxide by first-principles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:215502. [PMID: 38364269 DOI: 10.1088/1361-648x/ad2a0c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/16/2024] [Indexed: 02/18/2024]
Abstract
We present a first-principles investigation of Sn paramagnetic centers in Sn-doped vitreous silica based on calculations of the electron paramagnetic resonance (EPR) parameters. The present investigation provides evidence of an extended analogy between the family of Ge paramagnetic centers in Ge-doped silica and the family of Sn paramagnetic centers in Sn-doped silica for SnO2concentrations below phase separation. We infer, also keeping into account the larger spin-orbit coupling of Sn atoms with respect to Ge atoms, that a peculiar and highly distorted three-fold coordinated Sn center (i.e. the Sn forward-oriented configuration) should give rise to an orthorhombic EPR signal of which we suggest a fingerprint in the EPR spectra recorded by Chiodiniet al(2001Phys. Rev.B64073102). Given its structural analogy with theEα'and Ge(2) centers, we here name it as the 'Sn(2) center'. Moreover, we show that the single trapped electron at a SnO4tetrahedron constitutes a paramagnetic center responsible for the orthorhombic EPR signal reported in Chiodiniet al(1998Phys. Rev.B589615), confuting the early assignment to a distorted variant of the Sn-E' center. We hence relabel the latter orthorhombic EPR signal as the 'Sn(1) center' due to its analogy to the Ge(1) center in Ge-doped silica.
Collapse
Affiliation(s)
- L Giacomazzi
- CNR-IOM - Istituto Officina dei Materiali, National Research Council of Italy, c/o SISSA Via Bonomea 265, Trieste IT-34136, Italy
| | - L Martin-Samos
- CNR-IOM - Istituto Officina dei Materiali, National Research Council of Italy, c/o SISSA Via Bonomea 265, Trieste IT-34136, Italy
| | - N Richard
- CEA, DAM, DIF, F-91297 Arpajon, France
- Université Paris-Saclay, CEA, Laboratoire Matière en Conditions Extrêmes, F-91680 Bruyères-le-Châtel, France
| | - D Ceresoli
- CNR-SCITEC - Istituto di Scienze e Tecnologie Chimiche "G. Natta", National Research Council of Italy, via C. Golgi 19, Milano 20133, Italy
| | - A Alessi
- Laboratoire des Solides Irradiés (LSI), CEA/DRF/IRAMIS, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| |
Collapse
|
2
|
Simha C, Herrero-Saboya G, Giacomazzi L, Martin-Samos L, Hemeryck A, Richard N. Deep Levels and Electron Paramagnetic Resonance Parameters of Substitutional Nitrogen in Silicon from First Principles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2123. [PMID: 37513135 PMCID: PMC10384624 DOI: 10.3390/nano13142123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Nitrogen is commonly implanted in silicon to suppress the diffusion of self-interstitials and the formation of voids through the creation of nitrogen-vacancy complexes and nitrogen-nitrogen pairs. Yet, identifying a specific N-related defect via spectroscopic means has proven to be non-trivial. Activation energies obtained from deep-level transient spectroscopy are often assigned to a subset of possible defects that include non-equivalent atomic structures, such as the substitutional nitrogen and the nitrogen-vacancy complex. Paramagnetic N-related defects were the object of several electron paramagnetic spectroscopy investigations which assigned the so-called SL5 signal to the presence of substitutional nitrogen (NSi). Nevertheless, its behaviour at finite temperatures has been imprecisely linked to the metastability of the NSi center. In this work, we build upon the robust identification of the SL5 signature and we establish a theoretical picture of the substitutional nitrogen. Through an understanding of its symmetry-breaking mechanism, we provide a model of its fundamental physical properties (e.g., its energy landscape) based on ab initio calculations. Moreover by including more refined density functional theory-based approaches, we calculate EPR parameters (↔g and ↔A tensors), elucidating the debate on the metastability of NSi. Finally, by computing thermodynamic charge transition levels within the GW method, we present reference values for the donor and acceptor levels of NSi.
Collapse
Affiliation(s)
- Chloé Simha
- Alternative Energies and Atomic Energy Commission-Military Applications Division-Ile-de-France (CEA-DAM-DIF), Bruyères-Le-Châtel, F-91297 Arpajon, France
- Laboratory for Analysis and Architecture of Systems-National Centre for Scientific Research (LAAS-CNRS), University of Toulouse, CNRS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France
| | - Gabriela Herrero-Saboya
- National Research Council-Institute Of Materials (CNR-IOM), c/o International School for Advanced Studies (SISSA) Via Bonomea 265, IT-34136 Trieste, Italy
| | - Luigi Giacomazzi
- National Research Council-Institute Of Materials (CNR-IOM), c/o International School for Advanced Studies (SISSA) Via Bonomea 265, IT-34136 Trieste, Italy
- Materials Research Laboratory, University of Nova Gorica, Vipavska 11c, 5270 Ajdovscina, Slovenia
| | - Layla Martin-Samos
- National Research Council-Institute Of Materials (CNR-IOM), c/o International School for Advanced Studies (SISSA) Via Bonomea 265, IT-34136 Trieste, Italy
| | - Anne Hemeryck
- Laboratory for Analysis and Architecture of Systems-National Centre for Scientific Research (LAAS-CNRS), University of Toulouse, CNRS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France
| | - Nicolas Richard
- Alternative Energies and Atomic Energy Commission-Military Applications Division-Ile-de-France (CEA-DAM-DIF), Bruyères-Le-Châtel, F-91297 Arpajon, France
| |
Collapse
|
3
|
Chen Q, Adeniran O, Liu ZF, Zhang Z, Awaga K. Graphite-like Charge Storage Mechanism in a 2D π-d Conjugated Metal-Organic Framework Revealed by Stepwise Magnetic Monitoring. J Am Chem Soc 2023; 145:1062-1071. [PMID: 36595644 DOI: 10.1021/jacs.2c10650] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Quasi-two-dimensional (2D) fully π-d conjugated metal-organic frameworks (MOFs) have been widely employed as active materials of secondary batteries; however, the origin of their high charge storage capacity is still unknown. Some reports have proposed a mechanism by assuming the formation of multiple radicals on one organic ligand, although there is no firm evidence for such a mechanism, which would run counter to the resonance theory. In this work, we utilized various magnetometric techniques to monitor the formation and concentration of paramagnetic species during the electrochemical process of 2D π-d conjugated Cu-THQ MOF (THQ = tetrahydroxy-1,4-benzoquinone). The spin concentration of the fully reduced (discharged 1.5 V) electrode was estimated to be around only 0.1 spin-1/2 per CuO4 unit, which is much lower than that of the expected "diradical" form. More interestingly, a significant elevation of the temperature-independent paramagnetic term was simultaneously observed, which indicates the presence of delocalized π electrons in this discharged state. Such results were corroborated by first-principles density functional theory calculations and the electrochemically active density of states, which reveal the microscopic mechanism of the charge storage in the Cu-THQ MOF. Hence, a graphite-like charge storage mechanism, where the π-electron band accepts/donates electrons during the charge/discharge process, was suggested to explain the excessive charge storage of Cu-THQ. This graphite-like charge storage mechanism revealed by magnetic studies can be readily generalized to other π-d conjugated MOFs.
Collapse
Affiliation(s)
- Qi Chen
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8602, Japan
| | - Olugbenga Adeniran
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Zhen-Fei Liu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Zhongyue Zhang
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8602, Japan
| | - Kunio Awaga
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8602, Japan.,Integrated Research Consortium on Chemical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
4
|
Pell AJ. A method to calculate the NMR spectra of paramagnetic species using thermalized electronic relaxation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 326:106939. [PMID: 33744830 DOI: 10.1016/j.jmr.2021.106939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
For paramagnetic species, it has been long understood that the hyperfine interaction between the unpaired electrons and the nucleus results in a nuclear magnetic resonance (NMR) peak that is shifted by a paramagnetic shift, rather than split by the coupling, due to an averaging of the electronic magnetic moment caused by electronic relaxation that is fast in comparison to the hyperfine coupling constant. However, although this feature of paramagnetic NMR has formed the basis of all theories of the paramagnetic shift, the precise theory and mechanism of the electronic relaxation required to predict this result has never been discussed, nor has the assertion been tested. In this paper, we show that the standard semi-classical Redfield theory of relaxation fails to predict a paramagnetic shift, as does any attempt to correct for the semi-classical theory using modifications such as the inhomogeneous master equation or Levitt-di Bari thermalization. In fact, only the recently-introduced Lindbladian theory of relaxation in magnetic resonance [J.Magn.Reson., 310, 106645 (2019)] is able to correctly predict the paramagnetic shift tensor and relaxation-induced linewidth in pNMR. Furthermore, this new formalism is able to predict the NMR spectra of paramagnetic species outside the high-temperature and weak-order limits, and is therefore also applicable to dynamic nuclear polarization. The formalism is tested by simulations of five case studies, which include Fermi-contact and spin-dipolar hyperfine couplings, g-anisotropy, zero-field splitting, high and low temperatures, and fast and slow electronic relaxation.
Collapse
Affiliation(s)
- Andrew J Pell
- Department of Materials and Environmental Chemistry, Stockholm University, Svänte Arrhenius väg 16 C, 106 91 Stockholm, Sweden; Centre de RMN Trés Hauts Champs de Lyon (UMR5082 CNRS/ENS-Lyon/Université Claude Bernard Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France.
| |
Collapse
|
5
|
Wang SS, Zhang YY, Guan JH, Yu Y, Xia Y, Li SS. Numerical study of disorder on the orbital magnetization in two dimensions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:335302. [PMID: 32294636 DOI: 10.1088/1361-648x/ab8985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
The modern theory of orbital magnetization (OM) was developed by using Wannier function method, which has a formalism similar with the Berry phase. In this manuscript, we perform a numerical study on the fate of the OM under disorder, by using this method on the Haldane model in two dimensions, which can be tuned between a normal insulator or a Chern insulator at half filling. The effects of increasing disorder on OM for both cases are simulated. Energy renormalization shifts are observed in the weak disorder regime and topologically trivial case, which was predicted by a self-consistentT-matrix approximation. Besides this, two other phenomena can be seen. One is the localization trend of the band orbital magnetization. The other is the remarkable contribution from topological chiral states arising from nonzero Chern number or large value of integrated Berry curvature. If the fermi energy is fixed at the gap center of the clean system, there is an enhancement of |M| at the intermediate disorder, for both cases of normal and Chern insulators, which can be attributed to the disorder induced topological metal state before localization.
Collapse
Affiliation(s)
- Si-Si Wang
- SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, People's Republic of China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yan-Yang Zhang
- School of Physics and Electronic Engineering, Guangzhou University, 510006 Guangzhou, People's Republic of China
| | - Ji-Huan Guan
- SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yan Yu
- SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yang Xia
- Microelectronic Instrument and Equipment Research Center, Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, People's Republic of China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shu-Shen Li
- SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, People's Republic of China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
6
|
Ludwig M, Himmel D, Hillebrecht H. GIAO versus GIPAW: Comparison of Methods To Calculate 11B NMR Shifts of Icosahedral Closo-Heteroboranes toward Boron-Rich Borides. J Phys Chem A 2020; 124:2173-2185. [PMID: 31999459 DOI: 10.1021/acs.jpca.9b06582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, we perform first-principle density functional theory calculations with the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional to compare the results of the gauge-including atomic orbital (GIAO) method with the gauge-including projector-augmented wave (GIPAW) approach for isotropic 11B nuclear magnetic resonance shifts. GIPAW had been used successfully for the theoretical calculation of nuclear magnetic parameters of 11B species in strong ionic solid-phase compounds such as borates but had been applied very rarely to structures where boron is mainly involved in complex covalent bonding situations, for example, in icosahedra of boron-rich borides. Thus, we investigate the accuracy of both well-known methods and reliability of the effective treatment of core electrons on a test set containing 16 experimentally known closo-(hetero)dodecaboranes. In general, we find very good agreement between GIAO and GIPAW when compared to experimental observations. However, accidental degeneracies of the shift values are better predicted by GIPAW. The optimized molecular geometries on the PBE level agree well with gaseous electron diffraction data and lead to theoretical isotropic chemical 11B shifts with root-mean-square errors of 2.1 and 1.0 ppm depending on the used model of converting absolute shieldings to chemical shifts. The comparison with results from hybrid functionals (B3LYP, B3LYP-D2, and PBE0) shows a minor improvement in accuracy, which is in agreement with 13C shifts of sp3-hybridized species. In order to prove the reliability of the conversion parameters obtained by PBE, we report the calculated 11B shifts of 1,2-, 1,7-, and 1,12-PCB10H11 with GIAO and GIPAW to our knowledge for the first time. Additionally, Bader's analysis is carried out on the converged electron density for all boron species within the molecular test set, yielding no simple direct relation between charge and isotropic shifts.
Collapse
Affiliation(s)
- Martin Ludwig
- Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität, Albertstraße 21, 79104 Freiburg, Germany
| | - Daniel Himmel
- Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität, Albertstraße 21, 79104 Freiburg, Germany
| | - Harald Hillebrecht
- Institut für Anorganische und Analytische Chemie, Albert-Ludwigs-Universität, Albertstraße 21, 79104 Freiburg, Germany
| |
Collapse
|
7
|
Liu Y, Zeng L, Xu C, Geng F, Shen M, Yuan Q, Hu B. Optimizing the U value for DFT+U calculation of paramagnetic solid-state NMR shifts by double Fermi-contact-shift verification. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Sharma V, Ghosh RK, Kuanr BK. Investigation of room temperature ferromagnetism in transition metal doped BiFeO 3. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:395802. [PMID: 31195375 DOI: 10.1088/1361-648x/ab29d1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Spintronic functionality in ferromagnetic materials is a next-generation technique, to be used in data storage, high-frequency communications, and logic devices with minimum energy consumption. Ultra-low energy consumption in high-speed logic devices can be envisioned by inducing ferromagnetic behavior into room temperature multiferroic materials. However, there is a scarcity of room temperature multiferroic materials which have a definite spin degree of freedom. To fully exploit these technological challenges, we introduce the induced ferromagnetism in bismuth ferrite (BiFeO3, BFO) by doping transition metal (Cr, Ni, Co) elements. Our investigation initiates with the experimental study on chemically synthesized BiFe(1-x)M x O3 samples where x = 0.0625 (6.25%) and M = Cr, Ni and Co. Experimental findings are verified by theoretical simulation using density functional theory (DFT + U) and gauge including projector augmented wave (GIPAW) based calculation. All the experimental studies are done at room temperature while the theoretical verification using DFT is carried to understand the underlying mechanism behind the magnetic behavior of doped BiFeO3. It is done by optimizing the structural parameters comparable to the room temperature values. Microstructural and magnetic properties are studied using x-ray diffraction (XRD), transmission electron microscopy (TEM) and Vibrating sample magnetometer (VSM). All these experimental studies confirm the structural changes and induced ferromagnetism with doping. X-ray photoelectron spectroscopy (XPS) verified the reason behind this ferromagnetic property on the basis of oxygen vacancy content. Electron paramagnetic resonance (EPR) spectroscopy shows the tuning of Δg values due to enhanced magnetization. The density of states (DOS) calculations were performed on BFO (band-gap 1.89 eV) after structural optimization using DFT + U method, confirm our experimental findings. Magnetic moment values change drastically with doping elements (M), i.e. almost negligible for BFO (antiferromagnetic) to maximum (2.85 μ B/f.u.) for Ni-doped sample. We also compute the EPR g-tensor using GIPAW method to confirm the tuning of Δg values due to enhanced magnetization. These results can highlight the impact and importance of suitable transition element doping to induce the room temperature ferromagnetism in BiFeO3.
Collapse
Affiliation(s)
- Vinay Sharma
- Special Centre for Nanoscience, Jawaharlal Nehru University, Delhi-110067, India
| | | | | |
Collapse
|
9
|
Giacomazzi L, Martin-Samos L, Alessi A, Richard N, Boukenter A, Ouerdane Y, Girard S, Valant M, De Gironcoli S. v-P 2O 5 micro-clustering in P-doped silica studied by a first-principles Raman investigation. Sci Rep 2019; 9:7126. [PMID: 31073141 PMCID: PMC6509213 DOI: 10.1038/s41598-019-42887-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/29/2019] [Indexed: 11/24/2022] Open
Abstract
Synthetic vitreous silica is currently the preferred material for the production of optical fibres because of the several excellent properties of this glass, e.g. high transmission in the visible and IR domains, high mechanical strength, chemical durability, and ease of doping with various materials. For instance, fiber lasers and amplifiers exploit the light amplification properties provided by rare-earth ions employed as dopants in the core of silica-based optical fibers. The structure and composition of the nearest neighbor shell surrounding rare-earth ions in silica-based optical fibers and amplifiers have been intensively debated in the last decade. To reduce aggregation effects between rare-earth ions, co-dopants such as phosphorus and aluminium are added as structural modifiers; phosphorus-doping, in particular, has proved to be very efficient in dissolving rare-earth ions. In this work, we provide further insights concerning the embedding of P atoms into the silica network, which may be relevant for explaining the ease of formation of a phosphorus pentoxide nearest-neighbor shell around a rare-earth dopant. In particular, by means of first-principles calculations, we discuss alternative models for an irradiation (UV, x-, γ-rays) induced paramagnetic center, i.e. the so called room-temperature phosphorus-oxygen-hole center, and its precursors. We report that the most likely precursor of a room-temperature phosphorus-oxygen-hole center comprises of a micro-cluster of a few (at least two) neighboring phosphate tetrahedra, and correspondingly that the occurrence of isolated [(O-)2P(=O)2]- units is unlikely even at low P-doping concentrations. In fact, this work predicts that the symmetric stretching of P=O bonds in isolated [(O-)2P(=O)2]- units appears as a Raman band at a frequency of ~1110 cm-1, and only by including at least another corner-sharing phosphate tetrahedron, it is shown to shift to higher frequencies (up to ~40 cm-1) due to the shortening of P=O bonds, thereby leading to an improved agreement with the observed Raman band located at ~1145 cm-1.
Collapse
Affiliation(s)
- Luigi Giacomazzi
- Materials Research Laboratory, University of Nova Gorica, Vipavska 11c, 5270, Ajdovščina, Slovenia.
- CNR-IOM/Democritos National Simulation Center, Istituto Officina dei Materiali, c/o SISSA, via Bonomea 265, IT-34136, Trieste, Italy.
| | - L Martin-Samos
- CNR-IOM/Democritos National Simulation Center, Istituto Officina dei Materiali, c/o SISSA, via Bonomea 265, IT-34136, Trieste, Italy
| | - A Alessi
- Univ Lyon, UJM-Saint-Etienne, CNRS, IOGS, Laboratoire Hubert Curien UMR 5516, F-42023, St-Etienne, France
| | - N Richard
- CEA, DAM, DIF, F-91297, Arpajon, France
| | - A Boukenter
- Univ Lyon, UJM-Saint-Etienne, CNRS, IOGS, Laboratoire Hubert Curien UMR 5516, F-42023, St-Etienne, France
| | - Y Ouerdane
- Univ Lyon, UJM-Saint-Etienne, CNRS, IOGS, Laboratoire Hubert Curien UMR 5516, F-42023, St-Etienne, France
| | - S Girard
- Univ Lyon, UJM-Saint-Etienne, CNRS, IOGS, Laboratoire Hubert Curien UMR 5516, F-42023, St-Etienne, France
| | - M Valant
- Materials Research Laboratory, University of Nova Gorica, Vipavska 11c, 5270, Ajdovščina, Slovenia
| | | |
Collapse
|
10
|
Peng Z, Biktagirov T, Cho FH, Gerstmann U, Takahashi S. Investigation of near-surface defects of nanodiamonds by high-frequency EPR and DFT calculation. J Chem Phys 2019; 150:134702. [DOI: 10.1063/1.5085351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Z. Peng
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - T. Biktagirov
- Lehrstuhl für Theoretische Physik, Universität Paderborn, Warburger Str. 100, 33098 Paderborn, Germany
| | - F. H. Cho
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| | - U. Gerstmann
- Lehrstuhl für Theoretische Physik, Universität Paderborn, Warburger Str. 100, 33098 Paderborn, Germany
| | - S. Takahashi
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
11
|
Pell AJ, Pintacuda G, Grey CP. Paramagnetic NMR in solution and the solid state. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 111:1-271. [PMID: 31146806 DOI: 10.1016/j.pnmrs.2018.05.001] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 05/22/2023]
Abstract
The field of paramagnetic NMR has expanded considerably in recent years. This review addresses both the theoretical description of paramagnetic NMR, and the way in which it is currently practised. We provide a review of the theory of the NMR parameters of systems in both solution and the solid state. Here we unify the different languages used by the NMR, EPR, quantum chemistry/DFT, and magnetism communities to provide a comprehensive and coherent theoretical description. We cover the theory of the paramagnetic shift and shift anisotropy in solution both in the traditional formalism in terms of the magnetic susceptibility tensor, and using a more modern formalism employing the relevant EPR parameters, such as are used in first-principles calculations. In addition we examine the theory first in the simple non-relativistic picture, and then in the presence of spin-orbit coupling. These ideas are then extended to a description of the paramagnetic shift in periodic solids, where it is necessary to include the bulk magnetic properties, such as magnetic ordering at low temperatures. The description of the paramagnetic shift is completed by describing the current understanding of such shifts due to lanthanide and actinide ions. We then examine the paramagnetic relaxation enhancement, using a simple model employing a phenomenological picture of the electronic relaxation, and again using a more complex state-of-the-art theory which incorporates electronic relaxation explicitly. An additional important consideration in the solid state is the impact of bulk magnetic susceptibility effects on the form of the spectrum, where we include some ideas from the field of classical electrodynamics. We then continue by describing in detail the solution and solid-state NMR methods that have been deployed in the study of paramagnetic systems in chemistry, biology, and the materials sciences. Finally we describe a number of case studies in paramagnetic NMR that have been specifically chosen to highlight how the theory in part one, and the methods in part two, can be used in practice. The systems chosen include small organometallic complexes in solution, solid battery electrode materials, metalloproteins in both solution and the solid state, systems containing lanthanide ions, and multi-component materials used in pharmaceutical controlled-release formulations that have been doped with paramagnetic species to measure the component domain sizes.
Collapse
Affiliation(s)
- Andrew J Pell
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16 C, SE-106 91 Stockholm, Sweden.
| | - Guido Pintacuda
- Institut des Sciences Analytiques (CNRS UMR 5280, ENS de Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Clare P Grey
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
12
|
Springborg M, Molayem M, Kirtman B. Electronic orbital response of regular extended and infinite periodic systems to magnetic fields. I. Theoretical foundations for static case. J Chem Phys 2018; 147:104101. [PMID: 28915743 DOI: 10.1063/1.5001261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A theoretical treatment for the orbital response of an infinite, periodic system to a static, homogeneous, magnetic field is presented. It is assumed that the system of interest has an energy gap separating occupied and unoccupied orbitals and a zero Chern number. In contrast to earlier studies, we do not utilize a perturbation expansion, although we do assume the field is sufficiently weak that the occurrence of Landau levels can be ignored. The theory is developed by analyzing results for large, finite systems and also by comparing with the analogous treatment of an electrostatic field. The resulting many-electron Hamilton operator is forced to be hermitian, but hermiticity is not preserved, in general, for the subsequently derived single-particle operators that determine the electronic orbitals. However, we demonstrate that when focusing on the canonical solutions to the single-particle equations, hermiticity is preserved. The issue of gauge-origin dependence of approximate solutions is addressed. Our approach is compared with several previously proposed treatments, whereby limitations in some of the latter are identified.
Collapse
Affiliation(s)
- Michael Springborg
- Physical and Theoretical Chemistry, University of Saarland, 66123 Saarbrücken, Germany
| | - Mohammad Molayem
- Physical and Theoretical Chemistry, University of Saarland, 66123 Saarbrücken, Germany
| | - Bernard Kirtman
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
13
|
Mondal A, Gaultois MW, Pell AJ, Iannuzzi M, Grey CP, Hutter J, Kaupp M. Large-Scale Computation of Nuclear Magnetic Resonance Shifts for Paramagnetic Solids Using CP2K. J Chem Theory Comput 2017; 14:377-394. [DOI: 10.1021/acs.jctc.7b00991] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Arobendo Mondal
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekretariat C7, Strasse des 17 Juni 135, D-10623 Berlin, Germany
| | - Michael W. Gaultois
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Andrew J. Pell
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Marcella Iannuzzi
- Institut
für Chemie, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Clare P. Grey
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jürg Hutter
- Institut
für Chemie, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Martin Kaupp
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekretariat C7, Strasse des 17 Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
14
|
Giannozzi P, Andreussi O, Brumme T, Bunau O, Buongiorno Nardelli M, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Dal Corso A, de Gironcoli S, Delugas P, DiStasio RA, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko HY, Kokalj A, Küçükbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen NL, Nguyen HV, Otero-de-la-Roza A, Paulatto L, Poncé S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen AP, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X, Baroni S. Advanced capabilities for materials modelling with Quantum ESPRESSO. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:465901. [PMID: 29064822 DOI: 10.1088/1361-648x/aa8f79] [Citation(s) in RCA: 1713] [Impact Index Per Article: 214.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Quantum EXPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches. Quantum EXPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.
Collapse
Affiliation(s)
- P Giannozzi
- Department of Mathematics, Computer Science, and Physics, University of Udine, via delle Scienze 206, I-33100 Udine, Italy
| | - O Andreussi
- Institute of Computational Sciences, Università della Svizzera Italiana, Lugano, Switzerland
- Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - T Brumme
- Wilhelm-Ostwald-Institute of Physical and Theoretical Chemistry, Leipzig University, Linnéstr. 2, D-04103 Leipzig, Germany
| | - O Bunau
- IMPMC, UMR CNRS 7590, Sorbonne Universités-UPMC University Paris 06, MNHN, IRD, 4 Place Jussieu, F-75005 Paris, France
| | - M Buongiorno Nardelli
- Department of Physics and Department of Chemistry, University of North Texas, Denton, TX, United States of America
| | - M Calandra
- IMPMC, UMR CNRS 7590, Sorbonne Universités-UPMC University Paris 06, MNHN, IRD, 4 Place Jussieu, F-75005 Paris, France
| | - R Car
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States of America
| | - C Cavazzoni
- CINECA-Via Magnanelli 6/3, I-40033 Casalecchio di Reno, Bologna, Italy
| | - D Ceresoli
- Institute of Molecular Science and Technologies (ISTM), National Research Council (CNR), I-20133 Milano, Italy
| | - M Cococcioni
- Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - N Colonna
- Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - I Carnimeo
- Department of Mathematics, Computer Science, and Physics, University of Udine, via delle Scienze 206, I-33100 Udine, Italy
| | - A Dal Corso
- SISSA-Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, I-34136 Trieste, Italy
- CNR-IOM DEMOCRITOS, Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Italy
| | - S de Gironcoli
- SISSA-Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, I-34136 Trieste, Italy
- CNR-IOM DEMOCRITOS, Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Italy
| | - P Delugas
- SISSA-Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, I-34136 Trieste, Italy
| | - R A DiStasio
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States of America
| | - A Ferretti
- CNR Istituto Nanoscienze, I-42125 Modena, Italy
| | - A Floris
- School of Mathematics and Physics, College of Science, University of Lincoln, United Kingdom
| | - G Fratesi
- Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, I-20133 Milano, Italy
| | - G Fugallo
- ETSF, Laboratoire des Solides Irradiés, Ecole Polytechnique, F-91128 Palaiseau cedex, France
| | - R Gebauer
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, I-34151 Trieste, Italy
| | - U Gerstmann
- Department Physik, Universität Paderborn, D-33098 Paderborn, Germany
| | - F Giustino
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - T Gorni
- IMPMC, UMR CNRS 7590, Sorbonne Universités-UPMC University Paris 06, MNHN, IRD, 4 Place Jussieu, F-75005 Paris, France
- SISSA-Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, I-34136 Trieste, Italy
| | - J Jia
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States of America
| | - M Kawamura
- The Institute for Solid State Physics, Kashiwa, Japan
| | - H-Y Ko
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States of America
| | - A Kokalj
- Department of Physical and Organic Chemistry, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - E Küçükbenli
- SISSA-Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, I-34136 Trieste, Italy
| | - M Lazzeri
- IMPMC, UMR CNRS 7590, Sorbonne Universités-UPMC University Paris 06, MNHN, IRD, 4 Place Jussieu, F-75005 Paris, France
| | - M Marsili
- Dipartimento di Fisica e Astronomia, Università di Padova, via Marzolo 8, I-35131 Padova, Italy
| | - N Marzari
- Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - F Mauri
- Dipartimento di Fisica, Università di Roma La Sapienza, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - N L Nguyen
- Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - H-V Nguyen
- Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Hanoi, Vietnam
| | - A Otero-de-la-Roza
- Department of Chemistry, University of British Columbia, Okanagan, Kelowna BC V1V 1V7, Canada
| | - L Paulatto
- IMPMC, UMR CNRS 7590, Sorbonne Universités-UPMC University Paris 06, MNHN, IRD, 4 Place Jussieu, F-75005 Paris, France
| | - S Poncé
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - D Rocca
- Université de Lorraine, CRM2, UMR 7036, F-54506 Vandoeuvre-lès-Nancy, France
- CNRS, CRM2, UMR 7036, F-54506 Vandoeuvre-lès-Nancy, France
| | - R Sabatini
- Orionis Biosciences, Newton, MA 02466, United States of America
| | - B Santra
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States of America
| | - M Schlipf
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - A P Seitsonen
- Institut für Chimie, Universität Zurich, CH-8057 Zürich, Switzerland
- Département de Chimie, École Normale Supérieure, F-75005 Paris, France
| | - A Smogunov
- SPEC, CEA, CNRS, Université Paris-Saclay, F-91191 Gif-Sur-Yvette, France
| | - I Timrov
- Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - T Thonhauser
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, United States of America
| | - P Umari
- Dipartimento di Fisica e Astronomia, Università di Padova, via Marzolo 8, I-35131 Padova, Italy
- CNR-IOM DEMOCRITOS, Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Italy
| | - N Vast
- Laboratoire des Solides Irradiés, École Polytechnique, CEA-DRF-IRAMIS, CNRS UMR 7642, Université Paris-Saclay, F-91120 Palaiseau, France
| | - X Wu
- Department of Physics, Temple University, Philadelphia, PA 19122-1801, United States of America
| | - S Baroni
- SISSA-Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, I-34136 Trieste, Italy
| |
Collapse
|
15
|
Giacomazzi L, Martin-Samos L, Boukenter A, Ouerdane Y, Girard S, Alessi A, Gironcoli SD, Richard N. Photoactivated processes in optical fibers: generation and conversion mechanisms of twofold coordinated Si and Ge atoms. NANOTECHNOLOGY 2017; 28:195202. [PMID: 28345535 DOI: 10.1088/1361-6528/aa693b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this work we present an extensive investigation of nanoscale physical phenomena related to oxygen-deficient centers (ODCs) in silica and Ge-doped silica by means of first-principles calculations, including nudged-elastic band, electron paramagnetic resonance parameters calculations, and many-body perturbation theory (GW and Bethe-Salpeter equation) techniques. We show that by neutralizing positively charged oxygen monovacancies we can obtain model structures of twofold Si and Ge defects of which the calculated absorption spectra and singlet-to-triplet transitions are in excellent agreement with the experimental optical absorption and photo-luminescence data. In particular we provide an exhaustive analysis of the main exciton peaks related to the presence of twofold defects including long-range correlation effects. By calculating the reaction pathways and energy barriers necessary for the interconversion, we advance a double precursory origin of the [Formula: see text] and Ge(2) centers as due to the ionization of neutral oxygen monovacancies (Si-Si and Ge-Si dimers) and as due to the ionization of twofold Si and Ge defects. Furthermore two distinct structural conversion mechanisms are found to occur between the neutral oxygen monovacancy and the twofold Si (and Ge) atom configurations. Such conversion mechanisms allow to explain the radiation induced generation of the ODC(II) centers, their photobleaching, and also their generation during the drawing of optical fibers.
Collapse
Affiliation(s)
- Luigi Giacomazzi
- CNR-IOM/Democritos National Simulation Center, Istituto Officina dei Materiali, c/o SISSA, via Bonomea 265, I-34136 Trieste, Italy
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Lu J, Jung Lee Y, Luo X, Chun Lau K, Asadi M, Wang HH, Brombosz S, Wen J, Zhai D, Chen Z, Miller DJ, Sub Jeong Y, Park JB, Zak Fang Z, Kumar B, Salehi-Khojin A, Sun YK, Curtiss LA, Amine K. A lithium–oxygen battery based on lithium superoxide. Nature 2016; 529:377-82. [DOI: 10.1038/nature16484] [Citation(s) in RCA: 537] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/13/2015] [Indexed: 12/24/2022]
|
17
|
Vähäkangas J, Lantto P, Mareš J, Vaara J. Spin Doublet Point Defects in Graphenes: Predictions for ESR and NMR Spectral Parameters. J Chem Theory Comput 2015; 11:3746-54. [DOI: 10.1021/acs.jctc.5b00402] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jarkko Vähäkangas
- NMR Research Group, University of Oulu, P.
O. Box 3000, FIN-90014 Oulu, Finland
| | - Perttu Lantto
- NMR Research Group, University of Oulu, P.
O. Box 3000, FIN-90014 Oulu, Finland
| | - Jiří Mareš
- NMR Research Group, University of Oulu, P.
O. Box 3000, FIN-90014 Oulu, Finland
| | - Juha Vaara
- NMR Research Group, University of Oulu, P.
O. Box 3000, FIN-90014 Oulu, Finland
| |
Collapse
|
18
|
George BM, Behrends J, Schnegg A, Schulze TF, Fehr M, Korte L, Rech B, Lips K, Rohrmüller M, Rauls E, Schmidt WG, Gerstmann U. Atomic structure of interface states in silicon heterojunction solar cells. PHYSICAL REVIEW LETTERS 2013; 110:136803. [PMID: 23581355 DOI: 10.1103/physrevlett.110.136803] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Indexed: 06/02/2023]
Abstract
Combining orientation dependent electrically detected magnetic resonance and g tensor calculations based on density functional theory we assign microscopic structures to paramagnetic states involved in spin-dependent recombination at the interface of hydrogenated amorphous silicon crystalline silicon (a-Si:H/c-Si) heterojunction solar cells. We find that (i) the interface exhibits microscopic roughness, (ii) the electronic structure of the interface defects is mainly determined by c-Si, (iii) we identify the microscopic origin of the conduction band tail state in the a-Si:H layer, and (iv) present a detailed recombination mechanism.
Collapse
Affiliation(s)
- B M George
- Institut für Silizium-Photovoltaik, Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraße 5, D-12489 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
von Bardeleben HJ, Cantin JL, Gerstmann U, Scholle A, Greulich-Weber S, Rauls E, Landmann M, Schmidt WG, Gentils A, Botsoa J, Barthe MF. Identification of the nitrogen split interstitial (N-N)(N) in GaN. PHYSICAL REVIEW LETTERS 2012; 109:206402. [PMID: 23215512 DOI: 10.1103/physrevlett.109.206402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Indexed: 06/01/2023]
Abstract
Combining electron paramagnetic resonance, density functional theory, and positron annihilation spectroscopy (PAS), we identify the nitrogen interstitial defect in GaN. The isolated interstitial is unstable and transforms into a split interstitial configuration (N-N)(N). It is generated by particle irradiation with an introduction rate of a primary defect, pins the Fermi level at E(C)-1.0 eV for high fluences, and anneals out at 400 °C. The associated defect, the nitrogen vacancy, is observed by PAS only in the initial stage of irradiation.
Collapse
Affiliation(s)
- H J von Bardeleben
- INSP, Université Pierre et Marie Curie, UMR 7588 au CNRS 4 place Jussieu, 75005 Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Schnegg A, Behrends J, Fehr M, Lips K. Pulsed electrically detected magnetic resonance for thin film silicon and organic solar cells. Phys Chem Chem Phys 2012; 14:14418-38. [PMID: 22941053 DOI: 10.1039/c2cp41258f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In thin film solar cells based on non-crystalline thin film silicon or organic semiconductors structural disorder leads to localized states that induce device limiting charge recombination and trapping. Both processes frequently involve paramagnetic states and become spin-dependent. In the present perspectives article we report on advanced pulsed electrically detected magnetic resonance (pEDMR) experiments for the study of spin dependent transport processes in fully processed thin film solar cells. We reflect on recent advances in pEDMR spectroscopy and demonstrate its capabilities on two different state of the art thin film solar cell concepts based on microcrystalline silicon and organic MEH-PPV:PCBM blends, recently studied at HZB. Benefiting from the increased capabilities of novel pEDMR detection schemes we were able to ascertain spin-dependent transport processes and microscopically identify paramagnetic states and their role in the charge collection mechanism of solar cells.
Collapse
Affiliation(s)
- Alexander Schnegg
- Helmholtz-Zentrum Berlin für Materialien und Energie, Institute for Silicon Photovoltaics, Berlin, Germany.
| | | | | | | |
Collapse
|
21
|
Bonhomme C, Gervais C, Babonneau F, Coelho C, Pourpoint F, Azaïs T, Ashbrook SE, Griffin JM, Yates JR, Mauri F, Pickard CJ. First-principles calculation of NMR parameters using the gauge including projector augmented wave method: a chemist's point of view. Chem Rev 2012; 112:5733-79. [PMID: 23113537 DOI: 10.1021/cr300108a] [Citation(s) in RCA: 326] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Christian Bonhomme
- Laboratoire de Chimie de la Matière Condensée de Paris, Université Pierre et Marie Curie, CNRS UMR, Collège de France, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rokhsana D, Howells AE, Dooley DM, Szilagyi RK. Role of the Tyr-Cys Cross-link to the Active Site Properties of Galactose Oxidase. Inorg Chem 2012; 51:3513-24. [DOI: 10.1021/ic2022769] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dalia Rokhsana
- Department of Chemistry
and Biochemistry, Montana State University, Bozeman, Montana 59717, United
States
| | - Alta E. Howells
- Department of Chemistry
and Biochemistry, Montana State University, Bozeman, Montana 59717, United
States
| | - David M. Dooley
- Department of Chemistry
and Biochemistry, Montana State University, Bozeman, Montana 59717, United
States
| | - Robert K. Szilagyi
- Department of Chemistry
and Biochemistry, Montana State University, Bozeman, Montana 59717, United
States
| |
Collapse
|
23
|
Van Yperen-De Deyne A, Pauwels E, Van Speybroeck V, Waroquier M. Accurate spin–orbit and spin–other-orbit contributions to the g-tensor for transition metal containing systems. Phys Chem Chem Phys 2012; 14:10690-704. [DOI: 10.1039/c2cp41086a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Charpentier T. The PAW/GIPAW approach for computing NMR parameters: a new dimension added to NMR study of solids. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2011; 40:1-20. [PMID: 21612895 DOI: 10.1016/j.ssnmr.2011.04.006] [Citation(s) in RCA: 235] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 04/24/2011] [Accepted: 04/25/2011] [Indexed: 05/18/2023]
Abstract
In 2001, Mauri and Pickard introduced the gauge including projected augmented wave (GIPAW) method that enabled for the first time the calculation of all-electron NMR parameters in solids, i.e. accounting for periodic boundary conditions. The GIPAW method roots in the plane wave pseudopotential formalism of the density functional theory (DFT), and avoids the use of the cluster approximation. This method has undoubtedly revitalized the interest in quantum chemical calculations in the solid-state NMR community. It has quickly evolved and improved so that the calculation of the key components of NMR interactions, namely the shielding and electric field gradient tensors, has now become a routine for most of the common nuclei studied in NMR. Availability of reliable implementations in several software packages (CASTEP, Quantum Espresso, PARATEC) make its usage more and more increasingly popular, maybe indispensable in near future for all material NMR studies. The majority of nuclei of the periodic table have already been investigated by GIPAW, and because of its high accuracy it is quickly becoming an essential tool for interpreting and understanding experimental NMR spectra, providing reliable assignments of the observed resonances to crystallographic sites or enabling a priori prediction of NMR data. The continuous increase of computing power makes ever larger (and thus more realistic) systems amenable to first-principles analysis. In the near future perspectives, as the incorporation of dynamical effects and/or disorder are still at their early developments, these areas will certainly be the prime target.
Collapse
Affiliation(s)
- Thibault Charpentier
- CEA, IRAMIS, SIS2M, Laboratoire de Structure et Dynamique par Résonance Magnétique, UMR CEA-CNRS 3299, F-91191 Gif-sur-Yvette cedex, France.
| |
Collapse
|
25
|
Hoehne F, Lu J, Stegner AR, Stutzmann M, Brandt MS, Rohrmüller M, Schmidt WG, Gerstmann U. Electrically detected electron-spin-echo envelope modulation: a highly sensitive technique for resolving complex interface structures. PHYSICAL REVIEW LETTERS 2011; 106:196101. [PMID: 21668174 DOI: 10.1103/physrevlett.106.196101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Indexed: 05/10/2023]
Abstract
We show that the electrical detection of electron-spin-echo envelope modulation (ESEEM) is a highly sensitive tool to study interfaces. Taking the Si/SiO2 interface defects in phosphorus-doped crystalline silicon as an example, we find that the main features of the observed echo modulation pattern allow us to develop a microscopic model for the dangling-bond-like P(b0) center by comparison with the results of ab initio calculations. The ESEEM spectrum is found to be far more sensitive to the defect characteristics than the spectrally resolved hyperfine splitting itself.
Collapse
Affiliation(s)
- Felix Hoehne
- Walter Schottky Institut, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Pauwels E, Asher J, Kaupp M, Waroquier M. Cluster or periodic, static or dynamic—the challenge of calculating the g tensor of the solid-state glycine radical. Phys Chem Chem Phys 2011; 13:18638-46. [DOI: 10.1039/c1cp21452g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Kadantsev ES, Ziegler T. First-principles calculation of parameters of electron paramagnetic resonance spectroscopy in solids. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2010; 48 Suppl 1:S2-S10. [PMID: 20821407 DOI: 10.1002/mrc.2655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The hyperfine A-tensor and Zeeman g-tensor parameterize the interaction of an 'effective' electron spin with the magnetic field due to the nuclear spin and the homogeneous external magnetic field, respectively. The A- and g-tensors are the quantities of primary interest in electron paramagnetic resonance (EPR) spectroscopy. In this paper, we review our work [E.S. Kadantsev, T. Ziegler, J. Phys. Chem. A 2008, 112, 4521; E. S. Kadantsev, T. Ziegler, J. Phys. Chem. A 2009, 113, 1327] on the calculation of these EPR parameters under periodic boundary conditions (PBC) from first-principles. Our methodology is based on the Kohn-Sham DFT (KS DFT), explicit usage of Bloch basis set made up of numerical and Slater-type atomic orbitals (NAOs/STOs), and is implemented in the 'full potential' program BAND. Our implementation does not rely on the frozen core approximation. The NAOs/STOs basis is well suited for the accurate representation of the electron density near the nuclei, a prerequisite for the calculation of highly accurate hyperfine parameters. In the case of g-tensor, our implementation is based on the method of Van Lenthe et al. [E. van Lenthe, P. E. S. Wormer, A. van der Avoird, J. Chem. Phys. 1997, 107, 2488] in which the spin-orbital coupling is taken into account variationally. We demonstrate the viability of our scheme by calculating EPR parameters of paramagnetic defects in solids. We consider the A-tensor of 'normal' and 'anomalous' muonium defect in IIIA-VA semiconductors as well as the S2 anion radical in KCl host crystal lattice.
Collapse
Affiliation(s)
- Eugene S Kadantsev
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
28
|
Pauwels E, Declerck R, Verstraelen T, De Sterck B, Kay CWM, Van Speybroeck V, Waroquier M. Influence of Protein Environment on the Electron Paramagnetic Resonance Properties of Flavoprotein Radicals: A QM/MM Study. J Phys Chem B 2010; 114:16655-65. [DOI: 10.1021/jp109763t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ewald Pauwels
- Center for Molecular Modeling, Ghent University, Technologiepark 903, B-9052 Zwijnaarde, Belgium QCMM - alliance Ghent-Brussels, Belgium, and Institute of Structural and Molecular Biology and London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Reinout Declerck
- Center for Molecular Modeling, Ghent University, Technologiepark 903, B-9052 Zwijnaarde, Belgium QCMM - alliance Ghent-Brussels, Belgium, and Institute of Structural and Molecular Biology and London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Toon Verstraelen
- Center for Molecular Modeling, Ghent University, Technologiepark 903, B-9052 Zwijnaarde, Belgium QCMM - alliance Ghent-Brussels, Belgium, and Institute of Structural and Molecular Biology and London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Bart De Sterck
- Center for Molecular Modeling, Ghent University, Technologiepark 903, B-9052 Zwijnaarde, Belgium QCMM - alliance Ghent-Brussels, Belgium, and Institute of Structural and Molecular Biology and London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Christopher W. M. Kay
- Center for Molecular Modeling, Ghent University, Technologiepark 903, B-9052 Zwijnaarde, Belgium QCMM - alliance Ghent-Brussels, Belgium, and Institute of Structural and Molecular Biology and London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Veronique Van Speybroeck
- Center for Molecular Modeling, Ghent University, Technologiepark 903, B-9052 Zwijnaarde, Belgium QCMM - alliance Ghent-Brussels, Belgium, and Institute of Structural and Molecular Biology and London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Michel Waroquier
- Center for Molecular Modeling, Ghent University, Technologiepark 903, B-9052 Zwijnaarde, Belgium QCMM - alliance Ghent-Brussels, Belgium, and Institute of Structural and Molecular Biology and London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
29
|
Electron and vibrational spectroscopies using DFT, plane waves and pseudopotentials: CASTEP implementation. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.theochem.2009.12.040] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Resta R. Electrical polarization and orbital magnetization: the modern theories. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:123201. [PMID: 21389484 DOI: 10.1088/0953-8984/22/12/123201] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Macroscopic polarization P and magnetization M are the most fundamental concepts in any phenomenological description of condensed media. They are intensive vector quantities that intuitively carry the meaning of dipole per unit volume. But for many years both P and the orbital term in M evaded even a precise microscopic definition, and severely challenged quantum-mechanical calculations. If one reasons in terms of a finite sample, the electric (magnetic) dipole is affected in an extensive way by charges (currents) at the sample boundary, due to the presence of the unbounded position operator in the dipole definitions. Therefore P and the orbital term in M--phenomenologically known as bulk properties--apparently behave as surface properties; only spin magnetization is problemless. The field has undergone a genuine revolution since the early 1990s. Contrary to a widespread incorrect belief, P has nothing to do with the periodic charge distribution of the polarized crystal: the former is essentially a property of the phase of the electronic wavefunction, while the latter is a property of its modulus. Analogously, the orbital term in M has nothing to do with the periodic current distribution in the magnetized crystal. The modern theory of polarization, based on a Berry phase, started in the early 1990s and is now implemented in most first-principle electronic structure codes. The analogous theory for orbital magnetization started in 2005 and is partly work in progress. In the electrical case, calculations have concerned various phenomena (ferroelectricity, piezoelectricity, and lattice dynamics) in several materials, and are in spectacular agreement with experiments; they have provided thorough understanding of the behaviour of ferroelectric and piezoelectric materials. In the magnetic case the very first calculations are appearing at the time of writing (2010). Here I review both theories on a uniform ground in a density functional theory (DFT) framework, pointing out analogies and differences. Both theories are deeply rooted in geometrical concepts, elucidated in this work. The main formulae for crystalline systems express P and M in terms of Brillouin-zone integrals, discretized for numerical implementation. I also provide the corresponding formulae for disordered systems in a single k-point supercell framework. In the case of P the single-point formula has been widely used in the Car-Parrinello community to evaluate IR spectra.
Collapse
Affiliation(s)
- Raffaele Resta
- Dipartimento di Fisica, Università di Trieste, Strada Costiera 11, I-34014 Trieste, Italy
| |
Collapse
|
31
|
Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2009; 21:395502. [PMID: 21832390 DOI: 10.1088/0953-8984/21/39/395502] [Citation(s) in RCA: 6195] [Impact Index Per Article: 387.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure calculations and materials modeling, based on density-functional theory, plane waves, and pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). The acronym ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, and Optimization. It is freely available to researchers around the world under the terms of the GNU General Public License. QUANTUM ESPRESSO builds upon newly-restructured electronic-structure codes that have been developed and tested by some of the original authors of novel electronic-structure algorithms and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency are still its main focus, with special attention paid to massively parallel architectures, and a great effort being devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of independent and interoperable codes in the spirit of an open-source project, where researchers active in the field of electronic-structure calculations are encouraged to participate in the project by contributing their own codes or by implementing their own ideas into existing codes.
Collapse
Affiliation(s)
- Paolo Giannozzi
- CNR-INFM Democritos National Simulation Center, 34100 Trieste, Italy. Dipartimento di Fisica, Università degli Studi di Udine, via delle Scienze 208, 33100 Udine, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Weber V, Iannuzzi M, Giani S, Hutter J, Declerck R, Waroquier M. Magnetic linear response properties calculations with the Gaussian and augmented-plane-wave method. J Chem Phys 2009; 131:014106. [DOI: 10.1063/1.3156803] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Kadantsev ES, Ziegler T. Implementation of a DFT-Based Method for the Calculation of the Zeeman g-Tensor in Periodic Systems with the Use of Numerical and Slater-Type Atomic Orbitals. J Phys Chem A 2009; 113:1327-34. [DOI: 10.1021/jp805466c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Eugene S. Kadantsev
- Department of Chemistry, University of Calgary, Calgary, Alberta, T2N 1N4 Canada
| | - Tom Ziegler
- Department of Chemistry, University of Calgary, Calgary, Alberta, T2N 1N4 Canada
| |
Collapse
|
34
|
Soncini A. Charge and Spin Currents in Open-Shell Molecules: A Unified Description of NMR and EPR Observables. J Chem Theory Comput 2007; 3:2243-57. [DOI: 10.1021/ct700169h] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alessandro Soncini
- Department of Chemistry, Laboratory of Quantum Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| |
Collapse
|
35
|
Malkin I, Malkina OL, Malkin VG, Kaupp M. Relativistic two-component calculations of electronic g-tensors that include spin polarization. J Chem Phys 2005; 123:244103. [PMID: 16396530 DOI: 10.1063/1.2135290] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The first two-component relativistic density-functional approach for the calculation of electronic g-tensors is reported that includes spin polarization using noncollinear spin-density functionals. The method is based on the relativistic Douglas-Kroll-Hess Hamiltonian and has been implemented into the ReSpect program package. Using three self-consistent-field calculations with orthogonal orientations of total magnetization J, the full g-matrix may be obtained. In contrast to previous spin-restricted two-component treatments, results with the new approach agree excellently with spin-polarized one-component calculations for light-atom radicals. Additionally, unlike one-component approaches, the method also reproduces successfully the negative deltag(parallel)-values of heavy-atom 2sigma radicals and the negative deltag(perpendicular) components in cysteinyl. The new method removes effectively the dilemma existing up to now regarding the simultaneous inclusion of spin polarization and higher-order spin-orbit effects in g-tensor calculations. It is straightforwardly applicable to higher than doublet spin multiplicities and has been implemented with hybrid functionals.
Collapse
Affiliation(s)
- Irina Malkin
- Institut für Anorganische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | |
Collapse
|
36
|
Thonhauser T, Ceresoli D, Vanderbilt D, Resta R. Orbital magnetization in periodic insulators. PHYSICAL REVIEW LETTERS 2005; 95:137205. [PMID: 16197172 DOI: 10.1103/physrevlett.95.137205] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Indexed: 05/04/2023]
Abstract
Working in the Wannier representation, we derive an expression for the orbital magnetization of a periodic insulator. The magnetization is shown to be comprised of two contributions, an obvious one associated with the internal circulation of bulklike Wannier functions in the interior, and an unexpected one arising from net currents carried by Wannier functions near the surface. Each contribution can be expressed as a bulk property in terms of Bloch functions in a gauge-invariant way. Our expression is verified by comparing numerical tight-binding calculations for finite and periodic samples.
Collapse
Affiliation(s)
- T Thonhauser
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
37
|
Resta R, Ceresoli D, Thonhauser T, Vanderbilt D. Orbital Magnetization in Extended Systems. Chemphyschem 2005; 6:1815-9. [PMID: 16086345 DOI: 10.1002/cphc.200400641] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While the orbital magnetic dipole moment of any finite sample is well-defined, it becomes ill-defined in the thermodynamic limit as a result of the unboundedness of the position operator. Effects due to surface currents and to bulk magnetization are not easily disentangled. The corresponding electrical problem, where surface charges and bulk polarization appear as entangled, was solved about a decade ago by the modern theory of polarization, based on a Berry phase. We follow a similar path here, making progress toward a bulk expression for the orbital magnetization in an insulator represented by a lattice-periodic Hamiltonian with broken time-reversal symmetry. We therefore limit ourselves to the case where the macroscopic (i.e. cell-averaged) magnetic field vanishes. We derive an expression for the contribution to the magnetization arising from the circulating currents internal to the bulk Wannier functions, and then transform to obtain a Brillouin zone integral involving the occupied Bloch orbitals. A version suitable for practical implementation in discretized reciprocal space is also derived, and the gauge invariance of both versions is explicitly shown. However, tests on a tight-binding model indicate the presence of additional edge currents, and it remains to be determined whether these can be related to the bulk band structure.
Collapse
Affiliation(s)
- R Resta
- INFM Democritos National Simulation Center and Dipartimento di Fisica Teorica, Università di Trieste, Strada Costiera 11, 34014 Trieste, Italy
| | | | | | | |
Collapse
|
38
|
Patchkovskii S, Strong RT, Pickard CJ, Un S. Gauge invariance of the spin-other-orbit contribution to the g-tensors of electron paramagnetic resonance. J Chem Phys 2005; 122:214101. [PMID: 15974722 DOI: 10.1063/1.1917840] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The spin-other-orbit (SOO) contribution to the g-tensor (DeltagSOO) of electron paramagnetic resonance arises due to the interaction of electron-spin magnetic moment with the magnetic field produced by the orbital motion of other electrons. A similar mechanism is responsible for the leading term in nuclear magnetic-shielding tensors sigma. We demonstrate that analogous to sigma, paramagnetic DeltagSOO contribution exhibits a pronounced dependence on the choice of the magnetic-field gauge. The gauge corrections to DeltagSOO are similar in magnitude, and opposite in sign, to the paramagnetic SOO term. We calculate gauge-invariant DeltagSOO values using gauge-including atomic orbitals and density-functional theory. For organic radicals, complete gauge-invariant DeltagSOO values typically amount to less than 500 parts per million (ppm), and are small compared to other g-tensor contributions. For the first-row transition-metal compounds, DeltagSOO may contribute several thousand ppm to the g-tensor, but are negligible compared to the remaining deviations from experiment. With popular choices for the magnetic-field gauge, the individual gauge-variant contributions may be an order of magnitude higher, and do not provide a reliable estimation of DeltagSOO.
Collapse
Affiliation(s)
- S Patchkovskii
- Steacie Institute for Molecular Sciences, National Research Council (NRC) Canada, 100 Sussex Dr., Ottawa, Ontario K1A 0R6, Canada.
| | | | | | | |
Collapse
|
39
|
Neese F. Efficient and accurate approximations to the molecular spin-orbit coupling operator and their use in molecular g-tensor calculations. J Chem Phys 2005; 122:34107. [PMID: 15740192 DOI: 10.1063/1.1829047] [Citation(s) in RCA: 542] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Approximations to the Breit-Pauli form of the spin-orbit coupling (SOC) operator are examined. The focus is on approximations that lead to an effective quasi-one-electron operator which leads to efficient property evaluations. In particular, the accurate spin-orbit mean-field (SOMF) method developed by Hess, Marian, Wahlgren, and Gropen is examined in detail. It is compared in detail with the "effective potential" spin-orbit operator commonly used in density functional theory (DFT) and which has been criticized for not including the spin-other orbit (SOO) contribution. Both operators contain identical one-electron and Coulomb terms since the SOO contribution to the Coulomb term vanishes exactly in the SOMF treatment. Since the DFT correlation functional only contributes negligibly to the SOC the only difference between the two operators is in the exchange part. In the SOMF approximation, the SOO part is equal to two times the spin-same orbit contribution. The DFT exchange contribution is of the wrong sign and numerically shown to be in error by a factor of 2-2.5 in magnitude. The simplest possible improvement in the DFT-SOC treatment [Veff(-2X)-SOC] is to multiply the exchange contribution to the Veff operator by -2. This is verified numerically in calculations of molecular g-tensors and one-electron SOC constants of atoms and ions. Four different ways of handling the computationally critical Coulomb part of the SOMF and Veff operators are discussed and implemented. The resolution of the identity approximation is virtually exact for the SOC with standard auxiliary basis sets which need to be slightly augmented by steep s functions for heavier elements. An almost as efficient seminumerical approximation is equally accurate. The effective nuclear charge model gives results within approximately 10% (on average) of the SOMF treatment. The one-center approximation to the Coulomb and one-electron SOC terms leads to errors on the order of approximately 5%. Small absolute errors are obtained for the one-center approximation to the exchange term which is consequently the method of choice [SOMF(1X)] for large molecules.
Collapse
Affiliation(s)
- Frank Neese
- Max-Planck Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|
40
|
Iftimie R, Thomas JW, Tuckerman ME. On-the-fly localization of electronic orbitals in Car–Parrinello molecular dynamics. J Chem Phys 2004; 120:2169-81. [PMID: 15268355 DOI: 10.1063/1.1636697] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ab initio molecular-dynamics formalism of Car and Parrinello is extended to preserve the locality of the orbitals. The supplementary term in the Lagrangian does not affect the nuclear dynamics, but ensures "on the fly" localization of the electronic orbitals within a periodic supercell in the Gamma-point approximation. The relationship between the resulting equations of motion and the formation of a gauge-invariant Lagrangian combined with a gauge-fixing procedure is briefly discussed. The equations of motion can be used to generate a very stable and easy to implement numerical integration algorithm. It is demonstrated that this algorithm can be used to compute the trajectory of the maximally localized orbitals, known as Wannier orbitals, in ab initio molecular dynamics with only a modest increase in the overall computer time. In the present paper, the new method is implemented within the generalized gradient approximation to Kohn-Sham density-functional theory employing plane wave basis sets and atomic pseudopotentials. In the course of the presentation, we briefly discuss how the present approach can be combined with localized basis sets to design fast linear scaling ab initio molecular-dynamics methods.
Collapse
Affiliation(s)
- Radu Iftimie
- Department of Chemistry, New York University, New York, New York 10003, USA
| | | | | |
Collapse
|
41
|
|
42
|
Arbuznikov AV, Kaupp M, Malkin VG, Reviakine R, Malkina OL. Validation study of meta-GGA functionals and of a model exchange–correlation potential in density functional calculations of EPR parameters. Phys Chem Chem Phys 2002. [DOI: 10.1039/b207171a] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|